

Lean R&D for Open Qualifiable Tools

Matteo Bordin

Project Manager

Thanks!

Cyrille Comar (AdaCore)
Arnaud Dieumegard (IRIT)
Tonu Naks (Krates)
Marc Pantel (IRIT)
Frederic Pothon (ACG)
Elie Richa (AdaCore)
Jose' Ruiz (AdaCore)
Andres Toom (Krates/IRIT)

First Tool Qualification Symposium

AdaCore – Open Source Tool Provider for High-Integrity Systems

Development Environment

Multi-language development suite (Ada, C/C++)

Validated compilers (1.4M test results / day)

Certified run-time

Src-to-obj code traceability study

Qualified verification tools (stack usage, coding standard, ...)

QA & Testing for Embedded

Qualified structural coverage analysis up to MC/DC (no instrumentation)

Advanced Static Analysis

High-security development (EAL 5-7)

Formal methods & verification

DO-178B/C, ECSS, EN-50128 Qual./Cert. Kits

http://www.adacore.com/customers

Warning! The meaning of "Tool Qualification" in this presentation!

- - Not a generic "good enough" stamp
- Always to avoid manual activities without manual review
- Always for a precise objective
 - Coding standard verification
 - Structural coverage analysis

 - In the case of a code generator
 - Manual review of source code (compliance/consistency)
 - Low-level requirement-driven testing
 - Structural coverage

Is it really that difficult to qualify a code generator?

Project P - One core question

Some additional difficulties

DO-330 & other annexes

One of the first applications

Open

Role of the consortium and business model

Minimize re-qualification effort

Add new input/output languages, bug fixes, ...

Multi-domain

Avionics, space, automotive, ...

From Fordism to Lean Manufacturing to the Lean Startup

Our practical approach

- 1. Process modeling & process lines
- 2. Architecting of qualification material
- 3. Component-based development
- 4. Extensive use of metamodeling techniques
- 5. Advanced programming techniques
- 6. Constant measuring

Step 1 – Process modeling & process lines

Step 2 – Architecting of qualification material

Step 3 – A Component-based approach for qualification-by-composition

Algorithms

LANGUAGE

Input language-specific components

Dataflow
State machines
Components

Sequencing

Typing

Extrafunctional Constraints

Input language-specific decoration models

Intermediate Representation

Algorithms + Architecture + Allocation

Target language-specific components

Step 3 – A Component-based Approach for qualification-by-composition (I)

Multiple configuration

Composition of different components

Evolution of qualification material

To follow tool releases & emergence of new requirements

Continuous qualification

Qualification as part of common development activities

OPENCOSS, Safecer

FP/Artemis collaborations

Step 4 – Extensive use of metamodeling techniques

Note: EMF M is used as an interchange format, the P toolset does not depend on the EMF framework. Slide: 16

Tool Requirements ⇔ Pre/Post conditions

Unambiguous, Verifiable, Traceable

```
procedure Calculate Total Order
   (Self : in out Sequencer;
    Blocks : Block_List)
with Post =>
   -- @tr TR SEQ 1
   -- The executionOrder of each block shall be bigger than the
   -- one of the predecessors unless the block has internal memory
   -- or is a controlled block.
   (for all Elem of Blocks =>
       (if not Elem.Get inControlPorts.Is Empty then
           Elem.Get_executionOrder = -1
        else
           (if Elem.Is DirectFeedThrough then
               (for all Pre of Get All Predecessors (Elem) =>
                   (if Pre.Is DirectFeedThrough then
                       Elem.Get executionOrder > Pre.Get executionOrder))
            else Elem.Get executionOrder = -1)));
```

Step 6 – Constant quality measurement

Continuous building & Nightly test results

Qualification-specific metrics

Conclusion

A Lean path to the qualification of code generators

- 1. Process modeling & process lines
- 2. Architecting of qualification material
- 3. Extensive use of metamodeling techniques
- 4. Component-based development
- 5. Advanced programming techniques
- 6. Constant measuring

Soon available to the community

A first step towards collaborative tool qualification

www.open-do.org/projects/p