
Slide: 1 Copyright © 2013 AdaCore

Matteo Bordin

First Tool Qualification Symposium

Project Manager

Thanks!

Cyrille Comar (AdaCore)

Arnaud Dieumegard (IRIT)

Tonu Naks (Krates)

Marc Pantel (IRIT)

Frederic Pothon (ACG)

Elie Richa (AdaCore)

Jose’ Ruiz (AdaCore)

Andres Toom (Krates/IRIT)

Lean R&D for Open Qualifiable Tools

April 10th, 2013

Slide: 2 Copyright © 2013 AdaCore

AdaCore – Open Source Tool Provider for High-Integrity Systems

Development Environment

Advanced Static Analysis QA & Testing for Embedded

Multi-language development suite (Ada, C/C++)

Validated compilers (1.4M test results / day)

Certified run-time

Src-to-obj code traceability study

Qualified verification tools (stack usage, coding standard, …)

Qualified structural coverage analysis

up to MC/DC (no instrumentation)

High-security development (EAL 5-7)

Formal methods & verification

DO-178B/C, ECSS, EN-50128 Qual./Cert. Kits

http://www.adacore.com/customers

Slide: 3 Copyright © 2013 AdaCore

Warning! The meaning of “Tool Qualification” in this presentation!

• Not a generic “good enough” stamp

• Always to avoid manual activities without manual review

• Always for a precise objective

– Coding standard verification

– Structural coverage analysis

– …

– In the case of a code generator

– Manual review of source code (compliance/consistency)

– Low-level requirement-driven testing

– Structural coverage

Slide: 4 Copyright © 2013 AdaCore

One core question

Is it really that difficult

to qualify a code generator?

Slide: 5 Copyright © 2013 AdaCore

Project P - One core question

Slide: 6 Copyright © 2013 AdaCore

Is it really that difficult to qualify a code generator? Yes, it is

tool source code

tool operational requirements

t r a c e a b i l i t y

structural coverage
TESTS

external
components consistency

COMPLIANCE TO
STANDARDS

test cases

formal methods

object-orientation

Slide: 7 Copyright © 2013 AdaCore

Some additional difficulties

Pivot formalism

An intermediate internal representation

Code
Generation

Verification

of Integration

Control algorithms

Signal processing

Software architecture System and platform

System Engineer Software Engineer Automation Engineer

Model refinement

& transformation

Slide: 8 Copyright © 2013 AdaCore

Some additional difficulties (II)

DO-330 & other annexes
One of the first applications

 Open
 Role of the consortium and business model

 Minimize re-qualification effort
 Add new input/output languages, bug fixes, …

 Multi-domain
 Avionics, space, automotive, …

Slide: 9 Copyright © 2013 AdaCore

From Fordism to Lean Manufacturing to the Lean Startup

Slide: 10 Copyright © 2013 AdaCore

Our practical approach

1. Process modeling & process lines

2. Architecting of qualification material

3. Component-based development

4. Extensive use of metamodeling techniques

5. Advanced programming techniques

6. Constant measuring

Slide: 11 Copyright © 2013 AdaCore

Step 1 – Process modeling & process lines

Alleviated if using

formal specifications

Can use:

• Natural language

• Domain specific language

• Formal specification

Slide: 12 Copyright © 2013 AdaCore

Step 2 – Architecting of qualification material

Design
Model Src Code

Tool Operational

Requirements

Transformations

use

. . .

Functions Functions

Tool Architecture
traceable to src subprograms

Tool

Requirements
traceable to src subprograms

External

Components

Slide: 13 Copyright © 2013 AdaCore

Step 3 – A Component-based approach for qualification-by-composition

Algorithms Architectures

Typing

Input language-specific decoration models

Sequencing

Extra-

functional

Constraints

Dataflow

State machines

Components

Intermediate Representation

Algorithms + Architecture + Allocation

+
…

Input language-specific

components

Model refinement

components

Target language-specific

components

Slide: 14 Copyright © 2013 AdaCore

Step 3 – A Component-based Approach for qualification-by-composition (I)

Slide: 15 Copyright © 2013 AdaCore

Step 3 – A Component-based Approach for qualification-by-composition (III)

Multiple configuration
Composition of different components

 Evolution of qualification material
 To follow tool releases & emergence of new requirements

 Continuous qualification
 Qualification as part of common development activities

 OPENCOSS, Safecer
 FP/Artemis collaborations

Slide: 16 Copyright © 2013 AdaCore

Step 4 – Extensive use of metamodeling techniques

Note: EMF XMI is used as an interchange format, the P toolset does not depend on the EMF framework.

p.ecore

p’.ecore

pn.ecore

…

Src code Src code src code

A set of refining

metamodels

blocklibrary
.ecore

Design of tool intermediate

representation

Specification of

tool input

Importer

support

.mdl

.uml
…

Slide: 17 Copyright © 2013 AdaCore

Step 5 – Controlled use of advanced programming techniques

Tool Requirements  Pre/Post conditions
Unambiguous, Verifiable, Traceable

procedure Calculate_Total_Order

 (Self : in out Sequencer;

 Blocks : Block_List)

with Post =>

 -- @tr TR_SEQ_1

 -- The executionOrder of each block shall be bigger than the

 -- one of the predecessors unless the block has internal memory

 -- or is a controlled block.

 (for all Elem of Blocks =>

 (if not Elem.Get_inControlPorts.Is_Empty then

 Elem.Get_executionOrder = -1

 else

 (if Elem.Is_DirectFeedThrough then

 (for all Pre of Get_All_Predecessors (Elem) =>

 (if Pre.Is_DirectFeedThrough then

 Elem.Get_executionOrder > Pre.Get_executionOrder))

 else Elem.Get_executionOrder = -1)));

Slide: 18 Copyright © 2013 AdaCore

Step 6 – Constant quality measurement

Continuous building &

Nightly test results

Qualification-specific metrics

Slide: 19 Copyright © 2013 AdaCore

Conclusion

• A Lean path to the qualification of code generators

1. Process modeling & process lines

2. Architecting of qualification material

3. Extensive use of metamodeling techniques

4. Component-based development

5. Advanced programming techniques

6. Constant measuring

• Soon available to the community

– A first step towards collaborative tool qualification

www.open-do.org/projects/p

