
Hunting for Smells in Natural Language Tests
Benedikt Hauptmann

Maximilian Junker, Sebastian Eder
Technische Universität München, Germany

Lars Heinemann
CQSE GmbH,

Germany

Rudolf Vaas
Munich Re Group,

Germany

Peter Braun
Validas AG,

Germany

Abstract—Tests are central artifacts of software systems and
play a crucial role for software quality. In system testing, a lot
of test execution is performed manually using tests in natural
language. However, those test cases are often poorly written
without best practices in mind. This leads to tests which are
not maintainable, hard to understand and inefficient to execute.

For source code and unit tests, so called code smells and
test smells have been established as indicators to identify poorly
written code. We apply the idea of smells to natural language
tests by defining a set of common Natural Language Test Smells
(NLTS). Furthermore, we report on an empirical study analyzing
the extent in more than 2800 tests of seven industrial test suites.

Index Terms—system testing, natural language, test smells

I. INTRODUCTION

In many contexts, system test execution is still done man-
ually: A human tester executes test cases written in natural
language by interacting with the system under test. The
alternative, test automation, is expensive and does not pay
off in all situations. Moreover, test automation is sometimes
hardly feasible, for example, if the system under test contains
physical components such as in ATMs or embedded systems.
Table I shows a fictive example of a manual system test for
an ATM.

Unfortunately, manual tests are often written without soft-
ware engineering best practices in mind (such as abstraction
and reuse). For example, previous research found natural
language system tests to contain a significant amount of
redundancy (cloning) [1] which can considerably increase the
costs for maintaining and executing tests.

Source code, as well as unit tests, suffer from similar
problems. Time pressure or inexperience makes developers
ignore well-known design rules. This results in source and
unit test code that is less maintainable and understandable.

As a countermeasure, for both, source code and unit tests,
so called code smells [2] and test smells [3]–[5] have been
established as indicators for design flaws. In the last years,
several studies have shown the negative effect of smells with
respect to maintainability and code comprehension [6]–[9].

This paper applies the concept of smells to tests in natural
language, for example, for manual system tests. Adopting
existing unit test smells, we define smells for manual tests
in natural language - Natural Language Test Smells (NLTS).
Furthermore, we define metrics to automatically detect these
smells in natural language tests. Being able to find smells
automatically facilitates a continuous quality control of test
suites which helps to avoid bad quality from early on.

As a first step towards a validation, we apply our smell
metrics to seven real-world test suites from industrial business
information systems. The results show that every test suite we
analyzed exhibits smells. Furthermore, our test smells identify
smell hot spots and help to rate the overall quality of a test
suite.
Problem: Tests written in natural language often do not obey
well-established software engineering principles. This leads to
deficits affecting maintenance and comprehension.
Contribution: First, we introduce a set of test smells for
natural language tests that can be used to assess test suites
with respect to its impact on maintenance and test execution.
Second, we introduce ways to detect these smells automati-
cally using static analysis. Third, we report on first industrial
experiences analyzing the extent of test smells in natural
language system tests in seven industrial test suites.

TABLE I
EXAMPLE OF A MANUAL SYSTEM TEST FOR AN ATM

Test: Wrong PIN Entered Twice
Action Expected Result

1. Put ATM card in card-reader. ATM asks for the PIN.
2. Enter a random bad PIN. ATM responds that the PIN you

entered is wrong and that you
have only two more attempts left.

3. Enter the same PIN again. ATM responds that the PIN you
entered is the same wrong PIN
again and that you have only one
attempt left.

... ...

II. RELATED WORK

To the best of our knowledge this is the first work to study
smells in natural language tests. We relate our work to the
research areas of code-based test smells and quality assessment
of natural language artifacts.

A. Code-based test smells
The notion of a smell in software artifacts originates from

Fowler’s book on refactoring [2]. He identified a set of code
smells which are symptoms of design problems negatively
affecting maintainability. Inspired by Fowler’s work, van
Deursen et al. [3] were the first to introduce the notion of unit
test smells. Meszaros et al. [4] classified these smells into two
major categories. They distinguish between smells regarding
(1) the code and (2) the behavior of the tests. We build on
this work and transfer the notion of smells to tests written in
natural language.



B. Quality assessment of natural language artifacts

Previous work by our group has analyzed the extent of
the specific quality deficiency of duplication (cloning) both
in requirements [10] and tests [1]. In this work we take a
broader view and consider a variety of smells.

Several authors have proposed approaches to analyze quality
aspects of natural language requirements [11]–[13]. We build
on this work and use the suggested quality indicators to define
smells specifically for tests in natural languages.

III. NATURAL LANGUAGE TEST SMELLS

This section gives an overview on how natural language test
suites are structured. Based on this structure, we present the
set of smells that we identified for natural language tests.

A. Test Model

A test suite consists of a set of tests which are composed
of a sequence of steps. A step consists of an action and its
expected result, both written in natural language (see Figure
1). Furthermore, tests may use abstraction mechanisms such
as ways to fork tests or reuse test steps (indicated by TestCall
in Figure 1).

Fig. 1. Test Model as UML Diagram

B. Test Smells

The list of smells is the result of our experiences in quality
evaluation of natural language system tests that we have been
conducting in an industrial environment for the last two years.
For each smell, we describe which testing activity (e. g., test
comprehension, execution or maintenance) is impaired by it.
Smell 1: Hard Coded Values.
Tests contain lots of ’magic numbers’ or Strings (e. g., test
data or names of user interface elements).
⇒Maintenance: It is difficult find out where to perform
changes if hard coded values have to be changed.
Smell 2: Long Test Steps.
A test step is very long.
⇒Comprehension: A step’s intention is difficult to grasp.
Smell 3: Conditional Tests.
Tests are very complex and contain conditional logic which is
phrased in natural language.
⇒Comprehension: It is hard to understand the test’s intention.
⇒Correctness: Complex tests are more likely to have bugs.
Smell 4: Badly Structured Test Suite.
The structure of the test suite does not follow the structure of
the tested functionality.
⇒Comprehension: It is difficult to find out which functionality
a test is verifying.

⇒Execution: It is difficult to select tests for a test plan.
⇒Maintenance: If functionality changes, it is difficult to find
out which tests have to be adapted.
Smell 5: Test Clones.
Tests contain similar parts (e. g., introduced by copy&paste).
⇒Comprehension: Test sequences which are similar but not
identical are not easy to distinguish. It is not easy to grasp a
test’s intention.
⇒Maintenance: The effort to maintain duplicated parts of
tests increases. Furthermore, it is difficult to find out where
maintenance has to be performed.
Smell 6: Ambiguous Tests.
The test is underspecified and leaves room for interpretation.
⇒Comprehension: It is not clear what the idea of a test is.
⇒Execution: Multiple test executions of the same tests are not
comparable. The test execution becomes indeterministic.
Smell 7: Inconsistent Wording.
Domain concepts are not used in a consistent way (e. g., several
names are used for the same domain concept).
⇒Comprehension: It is difficult to detect similarities of tests.

IV. MEASURING NATURAL LANGUAGE SMELLS

In order to quantify the degree to which a test suite
is affected by test smells we define metrics measuring the
extent of the smells for every test. Furthermore, we propose
thresholds for the metrics based on which we consider a smell
as present. We define those thresholds based on our experience
in industrial quality assessment of tests over the last years.
Smell 1: Hard Coded Values.
We calculate the amount of hard coded values relative to the
length of a test (based on the number of words). We consider
words as hard coded values if they are in quotation marks or
consist of just numbers. A test contains a smell if more than
10% of its words match our definition of hard coded values.
Smell 2: Long Test Steps.
We count the number of words of every test step’s action and
expected result. A test contains a smell if it contains at least
one action or expected result with more than 50 words.
Smell 3: Conditional Tests.
We count the number of conditional words for every test.
We consider a word as conditional if it indicates a case
differentiation phrased in natural language1. A test contains
a smell if it contains at least one of those words.
Smell 4: Badly Structured Test Suite.
We remove all stop words2 from the text. The remaining words
are normalized by reducing them to their word stem3. On this
cleaned up text, we calculate a test’s most dominant concepts
for every test case using the term frequency-inverse document
frequency (TF-IDF) metric [15]. Furthermore, we assume that
a test suite is hierarchically structured in folders and sub
folders. Tests which are testing a similar functionality (and

1we used the words: if, whether, depending, when, in case
2e. g., a, and, or how
3we used the stemming approach introduced by Porter [14]



therefore share dominant concepts) should not be located in
different folders. A test contains a smell if there is an overlap
of dominant concepts with other tests located in different
folders.
Smell 5: Test Clones.
Following the definition from [1], we consider a test clone as
a substring of a test with at least 30 words appearing at least
twice in a test suite. To find clones which differ slightly (e. g.,
because of inconsistent typo fixes), clones are allowed to have
minor variations such that the difference (the gap) accounts
for less than 10% of the length of the clone. A test contains
a smell if it contains at least one clone.
Smell 6: Ambiguous Tests.
Similar to smell 3, we count the number of vague words4 in
every test. A test contains a smell if it contains at least one of
those words.
Smell 7: Inconsistent Wording.
We calculate the amount of inconsistent synonym usage. First,
similar to smell 4, we remove stop words and normalize words
to their word stem. Second, we group words having the same
meaning using the Java API for WordNet Searching5 and
calculate the most frequently used synonym for every group.
Third, going through every test step, we decide for every word
if there is a synonym in the test suite which is more often used.
A test contains a smell if it contains at least one word which
is not the most frequently used word in its synonym group.

V. EXPERIMENTAL INDUSTRIAL APPLICATION

To test the idea of natural language test smells we apply our
metrics to seven real-world test suites from industrial projects.
With this experiment we have the following two aims: First,
we want to validate if our smell metrics are sufficient to find
actual smells. Second, we want to quantify the extent of our
smells in real-world test suites.

A. Study Objects

Our study objects are system tests in natural language
of seven projects from the two companies Munich Re and
Cassidian. (note: clearance of second company still pending)

The Munich Re Group is one of the largest re-insurance
companies in the world. For their insurance business, they
develop a variety of individual information systems. The
systems of the tests we analyzed provide substantially different
functionality, ranging from damage prediction, over pharma-
ceutical risk management to credit and company structure
administration.

Cassidian, an EADS company, is a worldwide leader in
global security solutions and systems, providing products and
services to civil and military customers around the globe. The
tests we analyzed here stem from ground support systems
used, for example, for mission planning.

4we used the words: similar, better, similarly, worse, having in mind, take
into account, take into consideration, clear, easy, strong, good, bad, efficient,
useful, significant, adequate, fast, recent, far, close

5http://lyle.smu.edu/∼tspell/jaws

All analyzed systems are in productive use and provide
graphical user interfaces such as web front-ends or fat client
interfaces. The analyzed tests included regression tests and
tests of change requests and are performed frequently. For
non-disclosure reasons we named the test suites A to G (see
Table II).

TABLE II
STUDY OBJECTS

Test Suite #Tests #Words
A 72 27,450
B 1,804 529,122
C 135 34,136
D 605 317,205
E 42 9,990
F 102 144,249
G 117 93,547

total 2,877 1,155,699

B. Tool Support

All analyses of the tests were implemented on top of
ConQAT6, a modular open source software quality assessment
toolkit. ConQAT provides the functionality for processing the
natural language documents as well as for presenting analysis
results as HTML reports. The input for our analysis is a
complete test suite given as Excel or Word files. The result
is a tree representing the hierarchical organization of the test
cases along with the metric values. Furthermore, we visualize
the extent of smells as tree maps. This allows a top down
analysis of potential smell hot spots.

C. Results and Interpretation

For every smell metric, we performed manual inspections
to validate the findings. We inspected metric hot spots as well
as cold spots and adapted our configuration if necessary. After
that, we calculated the number of tests which are affected by
smells using our threshold (see Figure 2).

We found every smell in every test suite, however, the extent
of the smells differs between the test suites. For example, the
number of tests containing conditional or vague words is quite
similar between test suites. However, the percentage of tests
affected by cloning or bad structure differs strongly.

We tried to verify the meaningfulness of the result by
assessing the test suite’s quality manually. And indeed we
found that test suite A, which performed best regarding the
smell bad structure, is structured in a very clean way. It
is organized in a two level hierarchy where the first level
represents use cases and the second level the tests. The
organization of the other test suites is considerably less clear.

Moreover, test suite E is the result of a quality improvement
initiative and forms a rework of a part of test suite C. In
this rework, a clone detector has been used to find similar
parts which then have been manually extracted to reusable
units. However, the appearance of other smells decreased as
well. This leads to the suspicion that cleaning up one smell
positively affects other smells as well.

6http://www.conqat.org/



0%

20%

40%

60%

80%

100%

Hard Coded
Values

Long
Tests

Conditional
Tests

Bad
Structure

Test
Clones

Vague
Words

Inconsistent
Wording

Test Suite A
Test Suite B
Test Suite C
Test Suite D
Test Suite E
Test Suite F
Test Suite G

Fig. 2. Percentage of Tests Affected by Smells.

VI. DISCUSSION

The results of our experiments show that all proposed smells
are present in all analyzed systems. Moreover, we have seen
a clear variance between the test suites regarding the ratio of
tests affected by a particular smell. Most importantly, for the
system for which we know that they are well structured or that
concrete quality improvements regarding maintainability have
taken place, a lower extent of smells compared to the other
systems was observed.

While our smell analysis showed interesting results for the
analyzed systems, it cannot be safely used for an absolute
assessment of the quality of a test suite. This is due to the
thresholds and parameters used for the smells which we chose
from our own (i. e., limited) experience with the maintenance
of natural language tests. To increase objectivity of our smell
analysis, such thresholds and parameters should be determined
by a benchmark, taking into account a large set of different
projects, which remains an important direction for future work.

Finally, we concentrated on smells for which we can define
measures that can be determined automatically. However,
quality deficiencies such as bad naming can hardly be found
by a tool. Manual analysis is still required to cover such
quality aspects. However, we consider our automated analysis
as complimentary to those inspections and advocate the use
of both assessment methods for a comprehensive quality
assessment.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced a set of test smells for tests
written in natural language. In addition we defined measures
to automatically assess the extent of these smells. We applied
our metrics to seven industrial test suites demonstrating the
applicability of the smells and associated measures. The study
revealed that the smells are an indicator for quality issues
in manual tests as they coincided with our assessment of
the study objects. Furthermore, in one case the results also
mirrored the quality improvement introduced through rework
of the test suite.

However, our list of smells is not complete in the sense that
it captures all quality aspects of natural language tests. In fact,
it exclusively focuses on automatically measurable aspects to
facilitate continuous quality monitoring. Monitoring quality

checks continuously helps to uncover quality issues early and
therefore helps to prevent bad quality from the beginning.

To focus on other aspects besides maintainability, a com-
prehensive quality model would be required. However, our list
of smells is a first step in this direction and can help to get a
list of concrete quality deficiencies for manual test suite. As
future work, we plan to define additional smells covering more
aspects of natural language test quality. The long term goal is
to develop a comprehensive quality model with a connection of
high-level quality attributes (e. g., maintainability) to concrete
measures of the textual test cases. This approach has been
successfully pursued for modeling and assessing software
product quality [16].

REFERENCES

[1] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and R. Vaas, “Can Clone
Detection Support Test Comprehension?” in ICPC’12, 2012.

[2] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[3] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring
Test Code,” in XP’01, 2001.

[4] G. Meszaros, S. Smith, and J. Andrea, “The test automation manifesto,”
in XP’03, 2003.

[5] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[6] M. Abbes, F. Khomh, Y.-G. Gue andhe andneuc, and G. Antoniol, “An
empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension,” in CSMR’11, 2011.

[7] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of
the impact of code smells on software change-proneness,” in WCRE’09,
2009.

[8] A. van Deursen and M. Leon, “The video store revisited thoughts on
refactoring and testing,” in XP’02, 2002.

[9] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in ICSM’12, 2012.

[10] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” in ICSE’10, 2010.

[11] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An automatic quality
evaluation for natural language requirements,” in REFSQ’01, 2001.

[12] I. Hussain, O. Ormandjieva, and L. Kosseim, “Automatic quality as-
sessment of srs text by means of a decision-tree-based text classifier,”
in QSIC’07, 2007.

[13] W. Wilson, L. Rosenberg, and L. Hyatt, “Automated analysis of require-
ment specifications,” in ICSE’97, 1997.

[14] M. Porter, “An algorithm for suffix stripping,” Program, 1980.
[15] K. Jones, “A statistical interpretation of term specificity and its applica-

tion in retrieval,” Journal of documentation, vol. 28, no. 1, 1972.
[16] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz,

R. Plösch, A. Seidl, A. Goeb, and J. Streit, “The quamoco product
quality modelling and assessment approach,” in ICSE’12, 2012.


