
Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 1

User Manual:

MSC to C

Test Code Generator

Abstract:

The MSC to C test code generator generates C code for testing from

Message Sequence Charts (MSC) models. MSCs have been standardized

from the ITU in Z120. In addition to the stimulating test code generation

code stubs for testing reactions are generated. The execution of the

generated code produces protocols in MSC format, such that testing can

be completely model based. Since the C interface to the test object is

flexible, the generated test code can be executed in many different

settings: Within modelling tools like Matlab/Simulink or Rhapsody, as

module test completely on PCs, as integration test using c programmable

interface e.g. to CAN bus and directly on the target hardware.

The MSC to C test code generator has been developed by Validas AG,

initially supported from the research project mobilSoft, founded by

bayerische Staatsregierung. Currently the MSC to C test code generator is

a pre-product that may only be used in projects, were it has been

methodically introduced and configured by Validas AG.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 2

Contents:

1 Introduction..5

2 The MSC to C Code Generator ..6

3 Installation ...8

4 Generation Process..10

5 Generation Principles..11

5.1 Testable MSC Subset ... 11

5.1.1 Supported Constructs and Restrictions .. 11

5.1.2 Syntactic Well-Formedness.. 13

5.2 Generation Semantics... 14

5.2.1 HMSC... 15

5.2.2 MSC ... 16

5.2.3 Timing .. 20

5.2.4 Errors .. 21

5.3 Adaptations... 22

5.4 Options ... 23

5.4.1 Code Generation Options ... 23

5.4.2 Execution Options .. 25

5.4.3 Protocol Generation Options .. 26

6 Code Architecture..27

7 Examples ...30

7.1 MiniTimer .. 30

7.2 FM99 .. 31

7.3 SeqTest ... 32

7.4 CoregionTest .. 34

7.5 OptMsg... 35

8 Adaptations ..37

8.1 Formatter .. 37

8.2 Types and Return Values ... 37

8.3 Specification Independent Code... 39

8.3.1 main.. 40

8.3.2 msc2c_types ... 40

8.3.3 msc2c_time... 40

8.3.4 msc2c_debug.. 40

9 Extensions ...46

9.1 MSC Catalogue Generator ... 46

9.2 Matlab Catalogue Generator .. 46

9.3 Matlab Integration .. 47

9.4 MSC Transformations .. 49

10 Restrictions..51

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 3

A. Appendix MPR Grammar ..52

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 4

Figures:

Figure 1: Overview of the Generation.. 6

Figure 2: Generation with Function Catalogues .. 7

Figure 3: MSC to C Setup Program ... 8

Figure 4: MSC to C Installer .. 8

Figure 5: MSC to C License Conditions .. 9

Figure 6: SuT Axis in MSC.. 16

Figure 7: Detected Errors in Protocol MSC... 22

Figure 8: Architecture of the Generated Code ... 28

Figure 9: Example Generation of Test Code.. 31

Figure 10: Generation Result of the Example.. 31

Figure 11: FM99 Example Generation... 32

Figure 12: Declaration of a Start Method in the SuT... 33

Figure 13: Seq Example: Main Test... 33

Figure 14: Seq Example: Checking Stubs.. 34

Figure 15: Example Optional Message .. 35

Figure 16: Result of Optional Message Test .. 36

Figure 17: Changing Return Values of Stubs... 39

Figure 18: Integration of MSCs in Matlab/Simulink ... 47

Figure 19: Properteis of the MSC Driver ... 48

Figure 20: Transformation Rule... 50

Figure 21: Original MSC.. 50

Figure 22: Transformed MSC .. 51

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 5

1 Introduction

The MSC to C test code generator (“MSC2C”) generates ANSI C code from

MSCs models. It includes function catalogues for interface specifications,

high-level MSCs (HMSC) for system states and MSCs for the test

sequences. Many constructs like messages, conditions, actions, timers,

references, options and alternatives can be used, however not the

complete standard is supported. The restrictions, described in Section 5.1

ensure that the MSCs are unique and can be used for testing. They can be

seen as modelling guidelines for message sequence charts.

The manual is structured as follows: An overview of MSC2C is given in

Chapter 2. Chapter 3 describes the installation of the code generator and

Chapter 4 describes the generation process of the code. The generation

principles are explained in Chapter 5. Chapter 6 describes the architecture

of the generated code that is the basis for adoptions in Chapter 0 to

specific test environments. Examples of the generation are described in

Chapter 7. Some limitations are listed in Chapter 9.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 6

2 The MSC to C Code Generator

The MSC to C test code generator generates test code from MSCs. The

test code stimulates the subject under test (SuT) and observes the

reactions of the SuT.

As Figure 1 shows, the inputs for the generator are MPR files (MSC textual

representations) as standardized by the ITU. The generated code mainly

consists of the test driver and the stubs. The test driver drives through

the test by stimulating the SuT, checking conditions, executing actions

and computing the test result. The stubs are called from the SuT and

store the passed values for the test driver.

The generated code has to be compiled together with the SuT code.

Execution of the test produces a test result, consisting of the number of

found errors, an MSC and state coverage of the specification and a test

protocol in MPR format.

Figure 1: Overview of the Generation

Important for successful test (especially for the compilation) is that the

interfaces of the SuT fit to the generated code. Therefore the interface

specifications are the basis for the MSCs and have to fit to the SuT. Using

simple C code wrappers for the SuT the generated code can test arbitrary

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 7

objects like embedded targets connected via busses or MATLAB models

connected via s-function wrappers, or simple module tests without

wrappers.

Since MSCs do not have a possibility to specify interfaces and types the

MSC to C generator uses a very general typing that has to be mapped to

the types from the SuT, e.g. by #define Message_Param1_Type uint8.

Another more helpful approach is to use so called “function catalogues”,

which are an XML-representation of the available messages together with

their types. Figure 2 shows the extended generation with function

catalogues.

Figure 2: Generation with Function Catalogues

Powerful MSC editors can use the function catalogues to support editing,

e.g. by offering pull-down menus for the selection of messages and

parameters.

Note that the interface / function catalogue is the most important link

between the implementation (SuT) and the test specification (MSC) and

should therefore be developed before the specification and the

implementation. Using function catalogues in the generation of MSC to C

code reduces the necessary work to adopt the interfaces as mentioned

above.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 8

3 Installation

MSC to C test code generator requires a java runtime engine (JRE) in the

version 1.5 or higher. Installation works on all Window platforms and has

been tested under Windows XP and cygwin.

Testing requires to compile and to link the generated C code with an

arbitrary ANSI C code compiler or IDE like gcc or visual studio.

The MSC to C test code generator uses a standard installer. By clicking on

the setup icon (see Figure 3) the installer (see Figure 4) starts.

Figure 3: MSC to C Setup Program

Figure 4: MSC to C Installer

First the user has to accept the licence conditions (see Figure 5), that

forbid to copy MSC 2 C test code generator to other projects than those

where Validas AG has introduced it.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 9

The next steps require selecting the destination directory (e.g. c:\Program

Files\MSC2C), to select the program folder for the Start menu, etc.

Figure 5: MSC to C License Conditions

After successful installation the execution path is adopted, such that the

following programs can be started from a program shell (like cmd or

cygwin):

• msc2c.bat: generates the c code from MSCs (see Section 4)

• xml2msc.bat: generates protocol MSCs from test executions (see

Section 4)

Into the start menu program folder a un-installation program for MSC to C

is added.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 10

4 Generation Process

The MSC to C code generation is integrated into a testing process for a

given SuT (with a C code interface) as follows:

1. Edit the MSCs and store them into an MSC-Document (with several

MSCs) MPR-File

2. generate c code using msc2c.bat

3. compile c code and link it to the SuT (or it’s c interface)

4. executing the c code yields

a. test result (number of detected errors)

b. test coverage

c. test protocol in XML format (if selected with the option

–gen=file.xml)

5. generate the protocol MSC (if created in step 4.c) using

xml2msc.bat

If the protocol does not produce the expected results the MSC or the SuT

have to be adopted.

The generation process requires some preparation. The main goal of the

preparation is to compile the generated code together with the SuT

interface. The amount of adoption work depends on the number of

functions and arguments in the interface of the SuT. The generated code

(see Section 6) consists of test code that shall not be adopted and

wrapper code that can be manually adopted.

Note that defaults for the wrapper code are generated together with the

test code. After adaptation of the wrapper code this generation has to be

switched off with the option –nocp. Another possibility (which is

recommended) is to add the adoptions to the data declarations of the MSC

or the function catalogues (see Section 6).

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 11

5 Generation Principles

The code generation works for a subset of MSCs. The subset is described

in Section 5.1 and can also be considered as modelling guidelines for

testable MSCs. The translation semantics are described in Section 5.1.1.

The generation options (see Section 5.3) allow controlling some semantic

and syntactic aspects of the generation.

5.1 Testable MSC Subset

The MSC to C test code generation does not work for the complete MSC

standard, but for a subset of testable MSCs. In contrast to MSCs, which

can describe arbitrary observable sequences, using MSCs for testing

requires to derive concrete input values for driving the tests (for example

don’t care values (_) in messages can only be used for messages coming

from the SuT, but not for stimulation).

The conformity of a MSC to the testable subset is checked before the

generation. If the MSC is not testable the generation will not be started

and the violations are reported on the output console.

The following subsections describe the separate rule of subset.

5.1.1 Supported Constructs and Restrictions

The following tables (for HMSCs: Table 1 and MSCs: Table 2) show the

supported constructs that can be used for modelling.

The start symbol is a triangle. The start symbol marks
the start state that is entered without further specified
actions, e.g. by starting the software, or connecting the
ECU to power. There may be only one start symbol per
HMSC.

A condition is depicted with a hexagon. Conditions
describe the states of a system. The states are
connected using references to MSCs that represent the
transitions in the system. Outgoing references are
beyond the state, incoming references above the state.
Conditions can be setting conditions (with “when”) or
checking conditions like “when finished”. In the later
case the conditions have to be set somewhere in the
MSCs / HMSCs.

 A parameter of a HMSC is declared after the name of

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 12

the HMSC with the keyword ‘variables’. Parameter
declarations consist of the name and the type of the
parameter.

An MSC reference is depicted as an oval box with the
name of the referenced MSC and the instantiations of
all parameters of the MSC. A reference in an HMSC
must connect two conditions / states. If a reference has
several successor states, they must be “when states” or
“otherwise”.

Table 1: Supported Constructs in HMSC

An axis in the MSC is depicted a vertical line under a
box. The name of the axis is written in the box, the kind
of the axis can be written above the box. Axes are used
to describe the components in a system.

A message is depicted as an arrow. Messages can be
between axes or connect one axis with the
environment. The direction of the message (incoming or
outgoing from the SuT) depends on the axis, which
corresponds to the SuT. Message parameters are
appended in brackets.

A gate is an interface of MSCs. Incoming and outgoing
messages can use gates.

An action is depicted as a square box. The action that
is executed is written in the box. The action shall be
executable and might refer to (defined) variables and
help functions.

A condition is depicted as a hexagon. The condition
that has to be fulfilled is written in the box. The condition
shall be executable and evaluate to true or false. It
might use (defined) variables and help functions.

A text element is depicted in a box with a folded corner.
Text elements are used as comments in MSCs.

A comment annotation can be added to many elements
in MSCs.

An option is a box, marked with “opt”. The elements
inside the box are optional.

An alternative is a box, marked with “alt”. Dashed lines
separate the elements inside the box.

A loop is a box, marked with “loop”. The elements
inside the box are repeated. Loops can have a start
value and an end value to indicate the number of
repetitions. Loops starting with a condition (“while-
loops”) are repeated as long as the condition holds.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 13

A sequence is a box marked with “seq”. All elements
inside the box are executed as one sequence. This
allows to combine several sequences and to build
modular models. The checks (for absence of other
messages) at the end of MSCs are suppressed in all
sequences within the sequence box and executed at
the end of the sequence box.

A coregion is a region of an axis, marked with a
dashed line. Elements within coregions are executed
concurrently, i.e. the order between the elements is not
relevant.

A parameter of an MSC is declared after the name of
the MSC with the keyword ‘variables’. Parameter
declarations consist of the name and the type of the
parameter.

An MSC reference is depicted as an oval box with the
name of the referenced MSC and the instantiations of
all parameters of the MSC.

A start time action starts a timer. The name of the timer
is above the line, the time beyond.

A timeout condition denotes the timeout of a timer. The
name of the timer is above the line.

A stop time action stops a running timer. The name of
the timer is above the line.

A time annotation denotes the time interval between
the two annotated elements The second element has
after the minimal time and before the maximal time
bound has reached.

Table 2: Supported Constructs in MSCs

5.1.2 Syntactic Well-Formedness

Syntactic well-formedness is checked during parsing of the MPR-Files. The

following restrictions are required:

1. correspondence to the ITU grammar (see Appendix A)

2. well-formedness conditions of MSCs that can be checked from the

MSC-Editor

o the referenced MSCs are contained in the document

o no parameter is missing in the message.

3. correspondence to supported subsets of the grammar (see Appendix

 A)

4. semantic checks for testability:

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 14

o The kinds (condition / action) of the first elements in

alternative blocks are identical. The kinds of the modelling

elements are:

� action: action

� message to SuT: action

� start/cancel of timer: action

� condition: condition

� message from SuT: condition

� timeout of timer: condition

� Option: condition

� Alternative: first elements (all of the same type) in the

alternative

� Loop: action

� MSC-Reference: kind of first element in the referenced

MSC.

o First elements in options must be of the kind condition.

o No message is used in two different gates. If no gates are

specified for a message this check is omitted.

o All parameter names in different occurrences of message with

the same name are identical.

o No don’t care values are in messages that are sent to the SuT.

o MSC References in HMSC must start and end into a condition

node.

The MSC editor ensures many of them by construction, others (like the

reference correctness) can be ensured as syntactic checks in the editor.

5.2 Generation Semantics

The generation semantics have been designed for correspondence with

the MSC standard. This section describes the realization of the different

constructs.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 15

5.2.1 HMSC

HMSCs are realized as state machines using state variables for each

condition. For each HMSC in the document following functions are

generated:

• int <HMSC>(): the function that executes the complete test and

returns the number of errors found. If the HMSC has parameters

these are overtaken into the function.

• int <HMSC>_Step(): the function that executes one step of the test

until the next HMSC state is reached or an MSC waits for the

reaction of the SuT.

• int get_<HMSC>_State_Coverage(): the function that returns the

number of (completely) covered states in the HMSC. A state is

completely covered, if it has been reached and all outgoing

transitions have been covered. The maximal number of states is

<HMSC>_LAST_STATE_VALUE.

For every condition in the HMSC a state is generated. In this state a

function is executed that selects the test(MSC) to execute the test

according to the following heuristic:

• select the executable tests (References to MSCs): MSCs of kind

action are always executable, MSCs of kind condition can only be

executed if the condition is true. Note that this check can be

disabled using the option -noguards.

• Among the executable tests the test with the least coverage are

executed.

• Loops (references to MSCs that do end in the starting state) are

preferred to keep the overall test execution short.

• The user can increase the priority of an MSC using the option –up.

For every MSC-Reference (“transition”) in the HMSC (and all referred

MSCs) the call of a test function is generated that executes the test once.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 16

5.2.2 MSC

MSCs are realized as functions with a state. The state corresponds to the

position of the tests within the execution. If the state is zero the test is

finished.

• int <MSC>(): the function that executes the test of the MSC and

returns the number of errors. If the MSC waits for a condition to

become true, the MSC-State is not null. The MSC-states are stored

in a field.

• BOOL guard_<MSC>(): this function is generated for MSCs with

condition kind. It returns TRUE if the corresponding test can be

executed. The generation of this functions can be disabled using the

option –noguards. Note that the guards check all conditions in the

MSC and not only the first.

The translation of an MSC into test code depends on the selected target.

One Axis has to be specified as target. This can be done using the axis

instance kind “SuT” in the MSC (see Figure 6) or with the generation

option –sut.

Figure 6: SuT Axis in MSC

The selected SuT determines the semantics of test code generation. The

test code is generated for every element in the MSC. The semantics of the

elements is described in the following list:

• Message to SuT: is translated into a method call to the SuT: All

parameters of the message are passed in the order of their

specification. The names of the parameters are ignored. If a

parameter with name return is specified then its value is compared

with the return value from the SuT.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 17

• Message from SuT: is translated into a check if the stub has been

called from the SuT. The test driver waits at most the WAIT_MSG

time for the condition. This time can be configured using the

execution option -wm. If there is a time annotation on the message

(e.g. [10,100]), the maximal value (100) of the constraint is used

as maximal waiting time. If there are more time constraints for the

same message, the maximal time which is waited for the message is

the maximum of all time constraints (even if the earlier ending

constraints might fail, if the messages arrives at the latest

possibility). If a message does not arrive within the specified time,

an error is reported.

• Actions: are directly inserted into the generated test code. If not

present, an “;” is appended.

• Conditions: are inserted as checks (if (<cond>)) into the

generated test code. Note that “Named Conditions” of the MSC

standard are also supported. A named condition is a condition with a

name instead of a boolean term. Named conditions are checked

using “when name” and set using name. In the case of setting

named conditions a global variable is assigned to true. When checks

of named conditions are translated into the check of the variable. To

differentiate between Boolean variables and setting named

conditions the generation computes if the condition is checked

somewhere in the document using when. In this case it is treated as

named condition, otherwise as boolean term. The time for waiting

for a condition to become true is WAIT_COND and can be specified

using the execution option –wc.

• Options: are translated into conditional code. The first element in

the option (which is a condition node) is used as condition. All

remaining elements in the option are tested if the condition is true.

If the first node in an option is an outgoing message, the option will

be tested if the message is present after a certain amount of time.

This amount depends on the used time annotations are used a

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 18

default time (WAIT_OPT_MSG) is used. This default time can be

configured using the option –wo. The semantics of optional

message is illustrated in Section 7.5.

• Alternatives: have a special semantics depending on the SuT. If

the nodes in the alternatives are condition nodes the test driver

checks the disjunction of the conditions. If one alternative condition

is true, the corresponding alternative is tested. The waiting time for

an alternative to become true is WAIT_ALT, it can be configured

using the option -wa. If the alternatives start with messages to the

SuT, the alternatives describe several test cases. The choice which

test case is executed can be made from the test driver. Therefore a

complete test of “environment alternatives” requires testing all

alternatives. In this case the generated test function has an

additional parameter (int iAlt) and the coverage of the test is

only reached if all alternatives are tested. If several alternatives are

in one MSC the overall number of alternatives of the MSC is the

maximum of the alternatives.

• Seq: A sequence causes the contained elements to be executed as

one sequence with one absence check at the end of the Seq block

(see the example in Section 7.3)

• Loops: A loop is translated into a while loop, with the first condition

as guard. An index variable is used for counting the repetitions of

the loop. At the end of the loop the specified repetitions are

compared with the executed repetitions.

• Timers: are realized using timer structures that store the starting

time. If timers are checked for timeout, the elapsed time is

compared with the specified time. Similar to conditions and

messages there is a wait time for timeouts. The time for waiting for

a timeout to arrive is WAIT_TIMEOUT_TIME and can be specified using

the execution option –wto.

• Time annotations: can be attached between two so-called

timeable events (see ITU Z 120). For example messages and

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 19

conditions. The test code generator supports two kinds of time

annotations: exact time annotations and interval time annotations.

Exact time annotations are treated as intervals with identical upper

and lower bound. Before the execution of the first timeable event a

timer is started. The second timeable node is executed after the

lower bound of time. If this is not reached during execution the test

waits until the lower bound is reached. The upper bound of time

annotations is checked after the execution of the timeable event.

Note that this semantics does not interrupt the test after the

maximal amount of time, but issues an error if the bound is

violated.

• Coregions: describe parallel actions. In the case of messages from

the SuT their order is not checked. In case of other actions all

possible permutations are tested (like environment alternatives).

The coregion generation can be seen by the example in Section 7.4.

At the end of an MSC the SuT is checked for silence, i.e. if the SuT has

sent unspecified messages to the SuT. The default behaviour is that all

stubs are checked for silence. The messages can be partitioned into

groups using gates. For every MSC the gates that are checked for silence

can be specified with a comment element with the following form

checkgate = <value>

Possible values for checkgate are:

• all: all gates (with all messages from SuT). This is the default

setting

• used: all gates that are used in the MSC

• gate terms like g1+g2 or g1,g2 or all-g2

• single messages can be added to the gates, like used-cyclicM1

The generation of the silence check at the end of each MSC test can be

avoided by using a sequence box, which denotes that the element in the

box (mostly references to other MSCs) are executed within one sequence,

not separated by silence checks. The silence check is executed at the end

of the Seq block.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 20

5.2.3 Timing

The MSC standard allows to use time annotations and timers. Their value

are usually interpreted in milliseconds. Since timing depends on the

execution of MSC, the test code generator cannot ensure correct timing,

however it has a flexible timing concept that can be adopted easily to

meet the timing requirements.

The default timing concept is based on a counter (stCurStep) that is

incremented every time the test code is called. Hence calling the test code

every millisecond suffices to ensure correct timing.

Working with devices that provide access to hardware timers can also be

used for timing. In this case the time module msc2c_time (see Section 6)

has to be adopted manually and it’s generation must be prohibited using

the option –nocptime (se Section 5.4.1). The measured real time has to

be set from the user into the timing module (from where it is used during

the tests). Setting the real time can be done with a function, e.g.

/* help variable for getTimer */

static TIME_TYPE ttTime = 0;

/** this method returns the current time as set from the user */

TIME_TYPE getTime() {

 return ttTime;

}

/** this method must be used to set the time */

void setTime(TIME_TYPE tNew) {

 ttTime=tNew;

}

Using such an implementation requires that the time is set correctly from

the user, e.g. using the time stamp of a message receive event (xlEvent)

from the vector CAN card:

 setTime(xlEvent.timeStamp/1000000); /* convert ns to ms */

Note that working with such time concepts requires to provide the time

constantly (and not only if messages are received).

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 21

5.2.4 Errors

The detected errors are counted using the global variable iAllTestErrors

(declared in msc2c_debug module). This variable is statically initialized and

never reset, such that the user has to reset it, when restarting the tests

manually. In addition the errors occurred within one MSCs are counted

and reported at the end of every MSC.

Every reported error has a error kind (indicated by a number). The

available error kinds are described in the type Errors as declared in

msc2c_debug.h. The following error kinds are defined:

• OverallTestTimeout,

• ConditionViolated,

• UnexpectedMessage,

• MessageMissing,

• WrongMessageSequenceEarly,

• WrongMessageSequenceLate,

• WrongMessageParameterValue,

• WrongReturnParameterValue,

• WrongLoopRepetitionNumber,

• TimeAnnotationViolated,

• NoTimeoutOfTimer,

• WrongMSC2CConfiguration

When MSC protocols are generated the name of MSCs with errors are

prefixed with an “Error” tag. A typical example for an MSCs with errors

can be found in Figure 7. It shows the tagged name of the protocol MSC

(Error_At_11_21_21.970_MTest1) together with three errors. The kinds of

the messages can be found in brackts after the erron number, however

the textual description is equivalent to the error kind. Note that

unexpected messages are not displayed as messages, since they have no

model correspondence in the specification. Furthermore Figure 7 shows

that “two errors” seem to have the same number, however the second

error is just a description summarizing the two previous errors, and

therefore has no extra number

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 22

Figure 7: Detected Errors in Protocol MSC

5.3 Adaptations

The semantics of the generated code can be tailored for using it in

different contexts. The generated code has several specification

independent modules that can be adopted by the user. In order to provide

an executable test code (and a starting basis for the adaptation) defaults

are generated (mainly by copying) for these modules. If these defaults

have been adopted, the generation of the default files has to be disabled,

for example with the option –nocp, otherwise MSC2C overwrites the

changes. Note that adaptations can be misused for specification issues,

e.g. .to declare a variable that is needed in the test specifications;

however this shall be avoided, e.g. by declaring the variable in the MSC

document. The same holds for types that shall be defined / included from

the function catalogue.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 23

This section provides the signatures for the adoptable functions. More

details can be found in Section 8.3.

5.4 Options

There are three kinds of options that can be specified: First kind of options

are options for the MSC to C test code generator; second kind of options

are options that can be specified for the execution of the generated (and

compiled) test. Both programs support the option –help to display the

available options. The default values for the options are specified in

[square brackets], where [] means that option is disabled by default.

Finallys the protocol generation can also use some options.

5.4.1 Code Generation Options

The following options can be given to the MSC to C test code generator

(Note that the MPR-File(s) and the destination directory must be specified

after the options):

• -nocp []: do not copy the specification independent files (main.c

and msc2c*). This allows to manually adopt them to project specific

settings.

o –nocpmain []: do not copy main.c

o –nocptypes []: do not copy msc2c_types.h

o –nocpuserdefs []: do not copy msc2c_userdefs.h

o –nocptime []: do not copy msc2c_time.c and msc2c_time.h

o –nocpdebug []: do not copy msc2c_debug.c and msc2c_

debug.h

• -noformat []: the formatting of the generated code (see Section

 8.1) is disabled.

• -nouserprio []: the generation of the user prio methods is disabled.

• -noguards []: the guards, which determine the choice of the test to

execute in a given HMSC state are ignored in the MSC selection

heuristics. This reduces the sophisticated strategy to a simple

coverage guide, i.e. the MSC with the least coverage (number of

executions) is executed. The coverage is evaluated transition based.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 24

i.e. an MSC, which has only been executed in another state, has the

same coverage as an unexecuted MSC. In the case of several

equally covered MSCs in a state, the order of the MSCs in the

document determines the execution. Note that this strategy can lead

to inefficient executions, since instead of waiting in the HMSC state

until one MSC is executable an arbitrary MSC is started.

• -nomsgorder []: the order of messages from the SuT is relevant in

the semantics of MSCs. However in many test scenarios (like

software module test) the order of messages is not relevant. This

can be specified using a coregion in MSCs, however to simplify

specifications the coregions can be omitted using this option.

• -wc [0]: default value for WAIT_COND (see Section 5.2.2).

• -wm [100]: default value for WAIT_MSG (see Section 5.2.2).

• -wo [50]: default value for WAIT_OPT_MSG (see Section 5.2.2).

• -wa [200]: default value for WAIT_ALT (see Section 5.2.2).

• -wto [10000]: default value for WAIT_TIMEOUT_TIME (see Section

 5.2.2)

• -ext []: use the extension catalog for generation, especially the

type definitions of the DataLanguage section in the catalogue are

inserted into the generated TEST_types.h file. The extension

catalog can also be used for the generation of enumerations or

defines (see option –cataloggen)

• -cataloggen [none]: can have the values enum, define and

none. None does not generate type definitions (except the user

defined ones), Enum generates an enum type for each enumeration

in the catalogue, define just generates #define commands to define

the used values.

• -valueprefix [“”]: the prefix for the generation of values from the

catalogue. This option has effect if a catalogue is specified and the

value of cataloggen is define or enum.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 25

• -typeprefix [“”]: the prefix for the generation of type names from

the catalogue. This option has effect if a catalogue is specified and

the value of cataloggen is define or enum.

• -sut [“SuT”]: The name of the SuT axis or instance kind.

• -callprefix [“”]: the prefix of each called function in the SuT

• -stubprefix [“”]: the prefix for the generation of stubs. The

stubprefix option allows to use the generated test code integrated

with the original code by separating the name space. In the case

where an original function is called, the call of the (renamed) stub

has to been inserted into the original stub, otherwise the test driver

is not notified from reactions of the SuT. By defining the macros

CALL_REAL_<function> a call from the stub to a real function can

be inserted. Note that the real function cannot have the same name

as the stub.

• -module [“<File>”]: the file names of the generated code (Usually

the name of the MPR file (without the .mpr suffix) is used.

• -allActions [“false”]: If all actions=true all actions in the MSCs are

generated into the test code (not only those on the SuT).

• -allConditions [“false”]: If all conditions=true all conditions in the

MSCs are generated into the test code (not only those on the SuT).

5.4.2 Execution Options

The following options can be given to the generated test code (if the

default main file is used for argument processing).

• -d / -D: enables all debugging messages (default=off)

• -s=N starts debugging at step N

• -e=N ends debugging at step N

• -t : enables all model tracing commands (default=off)

• -tms : enables tracing of msc states (default=off)

• -tp : trace pending MSCs (in HMSC) (default=off)

• -dw : debugging of waiting messages (default=off)

• -tm=<MSC>: enables MSC tracing for MSC

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 26

• -gen=<File.xml>: starts generation of protocol information into

the specified file. The file has a simple xml format and is used for

the generation of MSC protocols

• -p <state>_<MSC>: increases the priority of MSC in State

• -wm=<value>: sets the waiting time (in steps) the system waits

for the presence of a message

• -wt=<value>: sets the waiting time (in steps) the system waits for

the presence of a timeout

• -i : ignore test errors, exit with 0 (default=off)

5.4.3 Protocol Generation Options

The xml2msc protocol generator requires the original MSC as a reference

and the protocol file that has been generated using the option –gen. In

addition there can be a function catalogue (at first place in arguments). If

this is present, the order of parameters is adopted to the given function

catalogue. Furthermore an option –realtime can be given that formats

the time annotations instead of the time ticks in a realtime format, e.g.

At_123456 is formatted as At_02:03.456.

The complete call of xml2msc is:

xml2msc EXT.xml MSC.MPR log.xml -realtime

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 27

6 Code Architecture

The generated code from a file TEST.mpr consists of the following files

(The name prefix TEST can be configured to any other value using the

option –module). The architecture consists of MSC specific files, that

depend on the test specification (starting with TEST) and of environment

specific files (starting with msc2c_). MSC2C generates defaults for the test

environment files. Adoptions for the test environment should be made

either in the msc2c_*-files (preferably in msc2c_userdefs.h) or in the test

specification (consisting of the MPR-File and the data declaration in the

function catalogue).

• TEST.c / TEST.h: test driver code (and declarations) from the MSC

• TEST_stubs.c / TEST_stubs.h: test stub code for the MSC

• TEST_model.c / TEST_model.h: model related information

• TEST_types.h: default types definitions and function catalogue

• main.c: main program for starting the test

• msc2c_debug.c / msc2c_debug.h: debugging routines and

generation of protocols

• msc2c_userdefs.h: user definitions, based on the types (and

required in the test specifications. Note: a default for this file is

generated from MSC2C to have a complete compiling code,

however, when changed from the user generation must be

suppressed using he option –nocpuserdefs.

• msc2c_time.c / msc2c_time.h: declarations of time functions

• msc2c_types.h: default types for generated code

The architecture (include structure) of the code is depicted Figure 8. It

shows the dependencies between the modules.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 28

Figure 8: Architecture of the Generated Code

The MSC Decls and the F.C. Decls are the data declarations that the

user can define in the MSC document and the function catalogue. While

MSC Decls should mainly contain test variables (and types), F.C.Decls

should contain all types, especially those required for the communication

with the SuT, which is in TEST_stubs (the callback functions, called from

the SuT) and TEST (the calling functions, called from the test driver).

Note that the default types that are generated in TEST_types if no other

types are defined (using #define) can be avoided by defining them in

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 29

msc2c_types.h, which is included in TEST and TEST_stubs before

TEST_types is included. If a function catalogue is used the adaptations

can also be made in the DataDeclarations section of the catalogue.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 30

7 Examples

There are several examples included in the distribution of MSC to C test

code generator. The examples are located in the subdirectory Examples.

7.1 MiniTimer

The example MiniTimer is a very simple test example dealing with a time

annotation and a timer. It has no interface to a SuT and hence does not

require a function catalogue, a SuT code or any manual adoptions. From

MiniTimer.MPR a complete compiling code can be generated as follows:

1. create a directory for the code, e.g. by:

md c:\tmp\ccode

cd c:\tmp\ccode

2. generate code by:

msc2c c:\Programme\MSC2C\Examples\MiniTimer.MPR c:\tmp\ccode

3. compile the generated code by:

gcc *.c

4. execute the generated code by:

a –gen=proto.xml

5. generate the protocol MSC by:

xml2msc c:\Programme\MSC2C\Examples\MiniTimer.MPR proto.xml

The resulting outputs should look similar to those displayed in Figure 9.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 31

Figure 9: Example Generation of Test Code

The generation results are in the directory c:\tmp\ccode (see Figure 10).

Figure 10: Generation Result of the Example

The result of the xml2msc protocol generation is in the file

proto.xml.mpr.

7.2 FM99

The example FM99 is a test for an AutoFOCUS model, from which c code

has been generated. The test is quite simple, however the interaction

between the model and the test code is not by message call, but by global

variables. This requires changing the main routine, such that the model

and the test are interleaved and the outputs from the model are

(manually) notified to the test code. This is done in a manually adopted

main.c file. Furthermore complex data types are used, such that the

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 32

VALUE_TYPE is not the default uint8, but char*. Therefore the basic

types (msc2c_types.h) are also manually adopted.

Generating the code would overwrite the adopted files, therefore

regeneration of these files is suppressed using the options –nocpmain and

–nocpmsc2ctypes.

Using the Example directory of the MSC2C distribution the generation

works as follows (see Figure 11):

1. cd c:/Programme/MSC2C/Examples/FM99/AFCCode

2. copy manually adopted files by: cp ../AdoptedCCode/m* .

3. generate code with: msc2c –nocpmain –nocpmsc2ctypes

–module=MSCTEST ../FM99.MPR . The option –module=MSCTEST is

required, since the manual adopted code uses MSCTEST as file

prefix instead of FM99.

4. compile the code (note that there is a subdirectory to include) with:

gcc –I=. –I=data *.c data/*.c

Figure 11: FM99 Example Generation

7.3 SeqTest

The example SeqTest shows the semantics of the sequence operation. To

demonstrate this the SuT has a method start(), which calls (the stubs)

A(), B(), C() and D(). This method is provided in the DataLanguage

field of the document (see Figure).

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 33

Figure 12: Declaration of a Start Method in the SuT

The main test is described in the MSC in Figure 13.

Figure 13: Seq Example: Main Test

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 34

It calls start two times and checks whether the stubs have been called.

The first check is modular and split into two MSCs M1 checks for the

presence of A and B and M2 which checks for C and D (see Figure 14). The

second check (M12) checks for the presence of all stubs. Mostly the

modular approach is preferred, however without the Seq box in the main

MSC the test of M1 would detect the unexpected calls C and D and the test

of M2 would fail since the Messages C and D have been “consumed” from

test M1. Therefore using a Seq operator in this interpretation of MSCs can

be useful to combine sequences.

Figure 14: Seq Example: Checking Stubs

7.4 CoregionTest

The example CoregionTest.MPR (in the examples directory of the

distribution) is an example that shows the different usages of Coregions

within one test, depending on the kind of the actions inside the coregion.

If the kind of the elements are incoming actions, their order is permuted

in every possible order (see MSCs Permute and PermuteMany). In the

other cases, for example the MSCs M2 and M12, the order of the messages

is not checked.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 35

7.5 OptMsg

The example OptMsg.MPR (in the examples directory of the distribution) is

an example that shows the semantics of an optional message. The

implementation of doIt calls doItFinished after it’s second call. Hence

the first optional message will not be present, but the second instance will

be present (see Figure 15)

Figure 15: Example Optional Message

The result of the execution of this test shows not only the expected

behaviour, but also how the time annotations are verified (see Figure 16).

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 36

Figure 16: Result of Optional Message Test

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 37

8 Adaptations

The test code can be used in many different test environments without

changing the MSC to C test code generator by adopting the wrapper code,

for example to run the tests on an embedded target, or to test an SuT

with a CAN or Flexray interface.

This section describes some typical adaptations like changes of the time

concept or the tracing.

8.1 Formatter

The generated code is formatted, per default, by an external tool called

GC GreatCode (http://sourceforge.net/projects/gcgreatcode/) in Version

1.140.

The formatter can be switched off using the option -noformat of

msc2c.bat.

The formatter and the applied rules file can be found in the formatter

directory: <your_install_path>\Generator\Formatter

The formatting rules can be adopted by changing conventions.cfg in the

formatter directory. This file contains the command-line options of GC.

A list of all available options, can be obtained by executing GC.exe –help

from a console in the formatter directory.

8.2 Types and Return Values

MSCs have only a rather untyped interface (the function catalogue) which

describes only the names of the called and calling functions and their

possible values (enumerated or as general number). MSC2C requires the

correct types of such functions, for example to bind parameters into

variables, or to generate the stubs. Therefore MSC2C assumes a simple

and flexible type scheme: Every parameter <p> has the type <p>_Type.

This can be defined in the function catalogue, e.g. by #define p_Type

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 38

uint8. In order to reduce the amount of required type definitions for

compiling the code, MSC2C generates defaults values for the types (in the

file TEST_types.h): In the above example this is be:

#ifndef p_Type

#define p_Type DEFAULT_PARAM_TYPE

#endif

The used default DEFAULT_PARAM_TYPE can also be defined in the function

catalogue. The same principle hold for the return types of functions. The

name of the return type for a message <msg> is <msg>_Return_Type.

The return values of stub functions (if present) are usually something like

TRUE or E_OK. MSC2C cannot use different return values in messages

that are incoming to the SuT (The reason for this is that the stub functions

for the incoming messages returning the value are called asynchronously

and do not have information in which MSC they are checked and which

return value they should return in this MSC). Therefore MSC2C uses a

default return value for each function, which is defined to the constant

value DEFAULT_RETURN_VALUE in the file msc2c_types.h. If it is desired to

have different return values for one stub within the test (for example to

compute a check-sum, or to test an error case) the return value of the

function has to be defined as a variable in the function catalog, e.g. by

#define msg_Return_Type int32

and

#define msg_Default_Return_Value my_msg_ReturnValue.

The variable my_msg_ReturnValue should be declared within the MSC and

assigned a value in an action before the stub is modelled and the action

which requires the return value from the stub is triggered, e.g. as

described in Figure 17.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 39

Figure 17: Changing Return Values of Stubs

Using complex structures for testing is also possible, however debugging

and tracing requires to print the values of these types in a uniform way,

e.g. using

printf(“value of p = %d\n”,p);

or

printf(“value of p = %s\n”,p);

This is achieved with the conversion macro TOVAL_p(), such that the

values of p are printed by

printf(“value of p = %d\n”,TOVAL_p(p));

Like for p_Type MSC2C generates default implementations for the TOVAL

macros (identity), which can be adapted by the user in the function

catalogue. The selection whether “%d” or “%s” shall be used for the

parameters is global for the test code. The default is “%d”. By defining

#define VALUE_TYPE char* and undefining VALUE_TYPE_DECIMAL in the

file msc2c_types.h.

For comparing elements of the types the EQUALS_Type functions are

generated in the same way.

8.3 Specification Independent Code

This section provides the signatures for the adoptable functions. Details

can be found in the code.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 40

8.3.1 main

The file main.c contains the main routine for starting the test. As

explained in Section 5.2.1, the test can also be called from other

applications or frameworks.

8.3.2 msc2c_types

The file msc2c_types.h contains basic type definitions that can be

changed, for example the type DEFAUT_PARAM_TYPE that is used as default

for the parameter. Default types are used in functions, if no specific types

are defined (see TEST_types.h).

8.3.3 msc2c_time

The file msc2c_time.c and msc2c_time.c contain the required functions

for the timing. The default timing is a simple execution step counter, but

other time concepts can be realized by changing this code.

/* type for getTime */

#define TIME_TYPE int

/** * this action is executed in every step

 * (before the test is executed)

 */

void time_entry_action();

/** this action is executed in every step

 * (after the test is executed)

 */

void time_exit_action();

/**

 * this method returns the current time

 * (uint as used in the specification)

 */

TIME_TYPE getTime();

/**

 * this method actualizes the current time (if necessary)

 */

void RUN_TIMERS();

8.3.4 msc2c_debug

The file msc2c_debug.c and msc2c_debug.c contain the informations,

which are relevant for debugging. Debugging differentiates between four

groups of debugging functions:

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 41

• tracing functions that trace a model element (e.g. entering a

state, receiving a message)

• debug info: addition information, e.g. .about values of timer, or

priorities and coverage of MSCs

• error: information about occurred errors

• generation: information for the generation of MSC protocols

Every group of debugging information consists of sub-functions belonging

to this group. Every group can be disabled / enabled separately.

Furthermore for every group a start and an end point can be declared, for

example to start the debugging information at a specified test time. All

functions base on a small subset of macros, that can be easily changed for

example if debugging information shall be written to a protocol file or a

bus.

The following debugging functions are available:

/** this action is executed in every step (before the test is executed) */
 void debug_entry_action();

/** this action is executed in every step (after the test is executed) */
 void debug_exit_action();

/* type of detectable errors */

 typedef enum {
 OverallTestTimeout,

 ConditionViolated,
 UnexpectedMessage,

 MessageMissing,
 WrongMessageSequenceEarly,

 WrongMessageSequenceLate,
 WrongMessageParameterValue,

 WrongReturnParameterValue,
 WrongLoopRepetitionNumber,

 TimeAnnotationViolated,
 NoTimeoutOfTimer,

 WrongMSC2CConfiguration

 } ErrorType;

#define StepType uint16 /* limits the maximal test length to 65535 steps */
#define AktionType uint8 /* limits the maximal number elements in one MSC to 256 */

/* the error counter (is incremented by each error function)*/

 int iErrs;
/* the step counter (has to be incremented from the test-caller)*/

 StepType stCurStep;

/* general macros that are used from the generation functions */

 FILE* fGen; /* has to be initialized before using the generation, e.g. with an
fGen=fopen("file","w"); */

#define FG (fGen?fGen:stdout)
#define GEN_0(text) fprintf(FG,text);

#define GEN_1(text,a) fprintf(FG,text,a);
#define GEN_2(text,a,b) fprintf(FG,text,a,b);

#define GEN_3(text,a,b,c) fprintf(FG,text,a,b,c);
#define GEN_4(text,a,b,c,d) fprintf(FG,text,a,b,c,d);

#define GEN_5(text,a,b,c,d,e) fprintf(FG,text,a,b,c,d,e);
#define GEN_6(text,a,b,c,d,e,f) fprintf(FG,text,a,b,c,d,e,f);

#define GEN_7(text,a,b,c,d,e,f,g) fprintf(FG,text,a,b,c,d,e,f,g);
#define GEN_8(text,a,b,c,d,e,f,g,h) fprintf(FG,text,a,b,c,d,e,f,g,h);

#define GEN_9(text,a,b,c,d,e,f,g,h,i) fprintf(FG,text,a,b,c,d,e,f,g,h,i);

#define GEN_10(text,a,b,c,d,e,f,g,h,i,j) fprintf(FG,text,a,b,c,d,e,f,g,h,i,j);

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 42

/*

 * the following functions and variables can be used to

 * control the AMOUNT of debugging information
 * they may be called from the main routine

 */
 /* starts ALL at step s */

 void msc2c_set_ALL_start(StepType s);
/* stops ALL at step s */

 void msc2c_set_ALL_end(StepType s);
/* starts debuging at step s */

 void msc2c_set_debug_start(StepType s);
/* stops debuging at step s */

 void msc2c_set_debug_end(StepType s);
/* starts tracing at step s */

 void msc2c_set_trace_start(StepType s);
/* stops tracing at step s */

 void msc2c_set_trace_end(StepType s);
/* starts generation at step s */

 void msc2c_set_gen_start(StepType s);
/* stops generation at step s */

 void msc2c_set_gen_end(StepType s);
/* starts error at step s */

 void msc2c_set_error_start(StepType s);
/* stops error at step s */

 void msc2c_set_error_end(StepType s);

/* functions for controling features */

/**************************************/
/* control ALL debugging info */

 void msc2c_set_ALL(BOOL b);
 void msc2c_set_debug(BOOL b);

 void msc2c_set_trace(BOOL b);
 void msc2c_set_gen(BOOL b);

 void msc2c_set_error(BOOL b);

/* GENERIC */
 void msc2c_set_TTT_FFF(BOOL b);

/* debug: selected stubs */

 void msc2c_set_debug_stub_all(BOOL b);
/* debug: all called stubs */

 void msc2c_set_debug_stub_selected(BOOL b);
/* debug: starting of timer */

 void msc2c_set_debug_timer_starting(BOOL b);
/* debug: reset of timer */

 void msc2c_set_debug_timer_reset(BOOL b);
/* debug: timeout timer */

 void msc2c_set_debug_timer_timeout(BOOL b);
/* debug: coverage */

 void msc2c_set_debug_coverage(BOOL b);

 BOOL msc2c_get_debug_coverage();
/* debug: prio of MSC */

 void msc2c_set_debug_prio(BOOL b);
/* debug: priority of best MSC */

 void msc2c_set_debug_prio_best(BOOL b);
/* debug: idle message in HMSC-State */

 void msc2c_set_debug_idle_state(BOOL b);
/* debug: guards */

 void msc2c_set_debug_guards(BOOL b);
/* debug: guards with number */

 void msc2c_set_debug_guards_int(BOOL b);
/* debug: waiting */

 void msc2c_set_debug_waiting(BOOL b);
/* debug: calls */

 void msc2c_set_debug_calls(BOOL b);
/* debug: received calls from SuT (Stubs) */

 void msc2c_set_debug_received_calls(BOOL b);
/* debug: gates */

 void msc2c_set_debug_gates(BOOL b);

/* trace: hmsc */

 void msc2c_set_trace_hmsc(BOOL b);
/* trace: hmsc state */

 void msc2c_set_trace_hmsc_state(BOOL b);

/* prints trace: next hmsc-state */

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 43

 void msc2c_set_trace_hmsc_state_changed(BOOL b);

/* trace: msc */
 void msc2c_set_trace_msc(BOOL b);

/* trace: msc state */

 void msc2c_set_trace_msc_state(BOOL b);
/* trace: msc calls */

 void msc2c_set_trace_msc_call(BOOL b);
/* trace: msc finished */

 void msc2c_set_trace_msc_finished(BOOL b);
/* trace: msc with alternatives finished */

 void msc2c_set_trace_msc_alts_finished(BOOL b);
/* trace: msc calls in HMSC */

 void msc2c_set_trace_msc_call_hmsc(BOOL b);
/* trace: msc executed MSC in HMSC with coverage */

 void msc2c_set_trace_msc_called_hmsc_cover(BOOL b);
/* trace: selected msc calls in HMSC */

 void msc2c_set_trace_msc_call_hmsc_selected(BOOL b);
/* trace: msc pending (incomplete MSCs) */

 void msc2c_set_trace_msc_pending(BOOL b);

/* control genartion */
 void msc2c_set_gen(BOOL b);

/* gen: hmsc (complete HMSCs) */
 void msc2c_set_gen_hmsc(BOOL b);

/* gen: hmsc states */
 void msc2c_set_gen_hmsc_state(BOOL b);

/* gen: hmsc states */
 void msc2c_set_gen_hmsc_refs(BOOL b);

/* gen: msc (complete HMSCs) */

 void msc2c_set_gen_msc(BOOL b);
/* gen: msc calls */

 void msc2c_set_gen_msc_call(BOOL b);
/* gen: msc messages */

 void msc2c_set_gen_msc_message(BOOL b);
/* gen: msc actions */

 void msc2c_set_gen_msc_action(BOOL b);
/* gen: msc conditions */

 void msc2c_set_gen_msc_condition(BOOL b);
/* gen: msc timer */

 void msc2c_set_gen_msc_timer(BOOL b);
/* gen: msc time annotations */

void msc2c_set_gen_msc_timeann(BOOL b);
/* gen: msc hierarchic elements */

 void msc2c_set_gen_msc_hierarchic(BOOL b);
/* gen: msc hierarchic alternatives */

 void msc2c_set_gen_msc_hierarchic_alternative(BOOL b);
/* gen: msc hierarchic pars */

 void msc2c_set_gen_msc_hierarchic_par(BOOL b);
/* gen: msc hierarchic options */

 void msc2c_set_gen_msc_hierarchic_option(BOOL b);
/* gen: msc hierarchic loops */

 void msc2c_set_gen_msc_hierarchic_loop(BOOL b);

/* function that can be used in the code */
/***/

/* GENERIC */
 void msc2c_TTT_FFF();

/* debug: stub all */

 void msc2c_TTT_stub_all(const char*);
/* debugging of calls of stubs */

void msc2c_debug_stub_all(const char* sStub);
/* debug: stub selected */

 void msc2c_debug_stub_selected(const char*);
/* debug: starting of timer */

 void msc2c_debug_timer_starting(char*,TIME_TYPE);
/* debug: reset of timer */

 void msc2c_debug_timer_reset(char*);
/* debug: timeout timer */

 void msc2c_debug_msc_timer_timeout(const char* sMSC,const char* sTimer);
/* debug: priorities of MSCs */

 void msc2c_debug_prio(const char*,const char*,const char*,int);
/* debug: priority of best MSC */

 void msc2c_debug_prio_best(int);
/* debug: idle message in HMSC-State */

 void msc2c_debug_idle_state(const char*,const char*);

/* debug: guards */

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 44

 void msc2c_debug_guards(const char*,const char*);

/* debug: guards with int value */
 void msc2c_debug_guards_int(const char*,const char*,int);

/* debug: waiting */

 void msc2c_debug_waiting(const char*,const char*,int);
/* debug: calls */

 void msc2c_debug_calls(const char*,const char*);
/* debug: received calls from SuT (Stubs) */

 void msc2c_debug_received_calls(MSC_Type, MSG_TYPE);
/* debug: gates */

 void msc2c_debug_gates(const char*,const char*);

/* prints trace: hmsc-state */
 void msc2c_trace_hmsc_state(const char* sHMSC,const char* sState,int iLevel);

/* prints trace: next hmsc-state */
 void msc2c_trace_hmsc_state_changed(const char* sHMSC,const char* sNewState);

/* prints trace: msc-state */
 void msc2c_trace_msc_state(const char* sMSC,int iMSCState);

/* prints tracing: msc calls */
 void msc2c_trace_msc_call(const char* sMSC);

/* prints tracing: msc finished */
 void msc2c_trace_msc_finished(MSC_Type iMSC,int iErrs);

/* prints tracing: msc with alternatives finished */
 void msc2c_trace_msc_alts_finished(const char* sMSC,int iAlts,int iErrs);

/* prints tracing: msc calls in HMSC */
 void msc2c_trace_msc_call_hmsc(const char* sHMSC,const char* sState,const char* sMSC);

/* prints tracing: executed msc in HMSC (with coverage) */
 void msc2c_trace_msc_called_hmsc_cover(const char* sHMSC,const char* sState,const char*

sMSC,int iCover);

/* prints tracing: selected msc calls in HMSC */
 void msc2c_trace_msc_call_hmsc_selected(const char* sHMSC,const char* sState,const char*

sMSC);
/* prints tracing: msc pending (incomplete MSCs) */

 void msc2c_trace_msc_pending(const char* sMSC,int iMSCState);

/* starts generation of an HMSC */
 void msc2c_gen_hmsc_start(int iHMSC);

/* ends generation of an HMSC */
 void msc2c_gen_hmsc_end(HMSC_Type iHMSC,int iErrors);

/* inserts an HMSCState */
 void msc2c_gen_hmsc_state(int iHMSC,int iState);

/* inserts a start of an MSC (MSC-Reference) */
 void msc2c_gen_hmsc_mscref(int iHMSC,int iMSC);

/* inserts a start of an MSC (MSC-Reference) with an alternative counter */
 void msc2c_gen_hmsc_mscref_alt(int iHMSC,int iMSC,int iAlts);

/* inserts an MSC Reference call (before the call) */
 void msc2c_gen_msc_call(int iMSCCalling,int iNode,int iMSCCalled);

/* inserts an MSC Reference call (after the call returned) */
 void msc2c_gen_msc_called(int iMSCCalling,int iNode,int iMSCCalled,int iErrors);

/* inserts an MSC Reference call (before the call) with an alternative counter */
 void msc2c_gen_msc_alt_call(int iMSCCalling,int iNode,int iMSCCalled,int iAlts);

/* inserts an MSC Reference call (after the call returned) with an alternative counter */

 void msc2c_gen_msc_alt_called(int iMSCCalling,int iNode,int iMSCCalled,int iAlts,int
iErrors);

/* inserts an action into the MSC */
 void msc2c_gen_msc_action(MSC_Type iMSC,int iAction);

/* inserts a condition into the MSC */
 void msc2c_gen_msc_condition(MSC_Type iMSC,int iNode,VALUE_TYPE vCond);

/* inserts a message with 0 parameters into the MSC */
 void msc2c_gen_msc_message0(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode);

/* inserts a message with 1 parameters into the MSC */
 void msc2c_gen_msc_message1(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode,VALUE_TYPE

iPar1);
/* inserts a message with 2 parameters into the MSC */

 void msc2c_gen_msc_message2(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode,VALUE_TYPE
iPar1,VALUE_TYPE iPar2);

/* inserts a message with 3 parameters into the MSC */
 void msc2c_gen_msc_message3(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode,VALUE_TYPE

iPar1,VALUE_TYPE iPar2,VALUE_TYPE iPar3);
/* inserts a message with 4 parameters into the MSC */

 void msc2c_gen_msc_message4(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode,VALUE_TYPE
iPar1,VALUE_TYPE iPar2,VALUE_TYPE iPar3,VALUE_TYPE iPar4);

/* inserts a message with 5 parameters into the MSC */
 void msc2c_gen_msc_message5(MSG_TYPE iMSG,BOOL bDir,MSC_Type iMSC,int iNode,VALUE_TYPE

iPar1,VALUE_TYPE iPar2,VALUE_TYPE iPar3,VALUE_TYPE iPar4,VALUE_TYPE iPar5);
/* inserts a timer start into the MSC */

 void msc2c_gen_msc_timer_start(MSC_Type iMSC,int iNode,int iTimer,int iValue);

/* inserts a timer timeout into the MSC */

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 45

 void msc2c_gen_msc_timer_timeout(MSC_Type iMSC,int iNode,int iTimer);

/* inserts a timer reset into the MSC */
 void msc2c_gen_msc_timer_reset(MSC_Type iMSC,int iNode,int iTimer);

/* inserts an exact time annotation (like [10]) between two nodes */

 void msc2c_gen_msc_timeann_start_exact(MSC_Type iMSC,int iNodeFrom,int iNodeTo,int iTimer,int
iValue);

/* inserts an interval time annotation (like [10,100]) between two nodes */
 void msc2c_gen_msc_timeann_start_inter(MSC_Type iMSC,int iNodeFrom,int iNodeTo,int iTimer,int

iValueMin,int iValueMax);
/* inserts an regular interval time annotation end */

 void msc2c_gen_msc_timeann_OK(MSC_Type iMSC,int iTimer,int iValue);
/* inserts an option begin into the MSC */

 void msc2c_gen_opt_begin(MSC_Type iMSC,int iNode);
/* inserts an option end into the MSC */

 void msc2c_gen_opt_end(MSC_Type iMSC,int iNode);
/* inserts an alternative begin into the MSC */

 void msc2c_gen_alt_begin(MSC_Type iMSC,int iNode);
/* inserts an alternative end into the MSC */

 void msc2c_gen_alt_end(MSC_Type iMSC,int iNode);
/* inserts an par begin into the MSC */

 void msc2c_gen_seq_begin(MSC_Type iMSC,int iNode);
/* inserts an par end into the MSC */

 void msc2c_gen_seq_end(MSC_Type iMSC,int iNode);
/* inserts and end of an MSC with the number of errors */

 void msc2c_gen_msc_finished(MSC_Type iMSC,int iErrs);

/* inserts a error into the MSC */
 void msc2c_gen_error_text(ErrorType error,int iErrorNumber,MSC_Type iMSC,int iNode,VALUE_TYPE

soll, VALUE_TYPE ist, const char* text);

 void dbg_error_text(ErrorType error,StepType step,MSC_Type msc,AktionType aktion, VALUE_TYPE
soll, VALUE_TYPE ist, const char* text);

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 46

9 Extensions

This chapter describes available extensions of the MSC2C testcode

generator.

9.1 MSC Catalogue Generator

Some editors support the definition of message catalogues and allow the

user to select instance and messages from those defined in the catalogue.

Using catalogues increases the comfort of editing sequences. There are

also standards like FIBEX for that purpose.

MSC2C supports a simple XML based catalogue for the definition of

messages. In the MSC-Editor from ESG these catalogues can be used as

“extension catalogues”.

The generation of catalogues works using the command cataloggen and

requires MPR files as input. For each MPR file a catalogue is generated

that contains definitions for all instances used in the MSCs and all

messages (including parameters). The parameters are enumerated by all

values found in the document. If this is not desired the type (e.g.

Number) should be inserted manually into the catalogue. The call is

 cataloggen [MSC.mpr]*

The resulting catalogue is generated in a file MSC_cat.xml for each

argument MSC.mpr.

9.2 Matlab Catalogue Generator

Similar to the generation of catalogues from MSCs it is also possible to

generate catalogues from MATLAB/Simulink models.

The generated catalogue contains instances for all subsystems and atomic

blocks that have interfaces (in or our ports). For every instance there

exists the following messages:

• setAll_<Instance>: Message with all in ports as parameters

• set_<Port>: Message with one in port as parameter

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 47

• get_<Port>: Message with one out port as parameter

The get_<Port> and set_<Port> methods are generated for all ports in

the model. This can lead to large number of instances and messages. For

black box testing, where only the topmost interface is required, the option

–frame is available. When this is specified only the outer elements are

generated.

 cataloggen [-frame] [Model.mdl]*

The resulting catalogue is generated in a file Model_cat.xml for each

argument Model.mpr.

9.3 Matlab Integration

The code generated from MSC2C can be used within Matlab/Simulink to

test the models. In this case a MSC Block is inserted into the model and

connected to the model under test (MuT).

Figure 18: Integration of MSCs in Matlab/Simulink

For the development of the test the following steps are required:

1. Select (and isolate) the model under test

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 48

2. Generate a message catalogue for the MSC (see Section 9.2)

3. Edit the MSC using the message catalogue

4. Integrate the MSC into Matlab/Simulink and execute the test

a. Generate code and s-function (using the MSC2C option

–matlabtarget=)

b. Compile the code and the s-function into a library (dll) with

the command compileLib.bat (check pathes in this command!)

c. Copy an MSCDriver from the mscdrivertemplate.mdl into the

Model and adjust it’s options to the generated and compiled

code (see Figure 19)

d. Connect MuT and MSCDriver by selecting the MuT and

executing the m-script gen_stubs (from MSC2C/Matlab) in the

Matlab target directory (where the compiled s-function is

located)

e. Execute the test by running the simulation

Figure 19: Properteis of the MSC Driver

The MSC block has a parameter logfile, where a text file can be specified.

If this parameter is present the test result will be documented into the

selected file. This can be used for generating the MSC from the test.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 49

An example for the Matlab integration is located in

MSC2C/Examples/FuelSys.

9.4 MSC Transformations

MSC Transformations transform MSCs by replacing elements in a MSC

according to specified replacement rules. I.e. a MSC transformation is a

function t: MSC x Rule -> MSC, that takes a MSC document and replaces

all elements according to the rules. The rules in general consist of a

selection part and a transformation part. All elements in the MSC are

compared with the selection part of a rule. If the selection part matches

the rule fires by applying the transformation part to the matching

element.

The implemented transformation tool uses MSCs for the specification of

the transformation rules for messages. A MSC is interpreted as

transformation rule in the form that the first element is used as selection

criteria and if an element matches the first element it is replaced by all

other elements in the MSC. The element matches, if it is of the same kind

(Message or Condition) and if it has the same important attributes. The

following attributes are checked during the selection:

• message:

o name

o direction

o connected axes

o parameter values

• condition:

o text in the conditions (ignoring white spaces)

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 50

Figure 20: Transformation Rule

The MSC in Figure 20 describes a transformation rule for MSCs. The rule in

the example will transform all messages Msg1 coming from the axis

System which have the value 5 for the parameter x into the three

messages GenMsg, GenAns and Msg1. While GenMsg and GenAns are new

messages Msg1 is the matching message. The new message will be

inserted as described (i.e. with one parameter), the matching message

will be inserted with all parameters and the specified value.

Applying the rule in Figure 20 to the MSC described in Figure 21 results

into the MSC in Figure 22, since only the second message matches.

Figure 21: Original MSC

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 51

Figure 22: Transformed MSC

Note that all transformations in the transformation MSC are applied only

once to the original MSCs. If several rules are specified the transformation

order is the specification order in the MSC document for the rules. Only

the first matching transformation rule is applied.

If the transformed elements have time annotations the starting time

annotations attached to the last message of the new inserted elements. If

the transformed element has ending time annotations they are attached

to the first inserted message.

The MSCs can be transformed by calling the script

transform.bat MSCOrig.mpr Rules.mpr MSCNew.mpr [-elim]

If MSCNew.mpr is omitted MSCOrig_trafo.mpr will be created.

If the option -elim is specified all MSCs (and references to them) which

contain no transformed message are eliminated from the transformation

result.

10 Restrictions

Currently the checkgates option is not implemented and the named

conditions are implemented as one variable for each condition, which is

set but not reset. This shall be changed to one single variable that is used

for all named conditions.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 52

A. Appendix MPR Grammar

The MPR (MSC textual representation) grammar used for representing

MSC is an implementation of the grammar specified by the ITU in Z120.

The rules formatted in bold font are supported from the MSC parser, the

other rules are formatted and overtaken from ITU, but cannot be used for

the building of testable MSCs.

main ::= starcomment* mpr_file.

mpr_file ::= textual_msc_document message_sequence_chart*.

string ::= character_string

 | name

 | number.

index ::= name

 | number.

end ::= comment? ';'.

comment ::= 'comment' character_string starcomment*.

text_definition ::= 'text' character_string starcomment starcomment* end.

textual_msc_document ::= document_head textual_defining_part

textual_utility_part.

document_head ::= 'mscdocument' instance_kind end using_clause*.

textual_defining_part ::= defining_language? defining_data?

defining_msc_reference*.

textual_utility_part ::= 'utilities' defining_msc_reference*.

defining_language ::= 'language' data_language_name end.

defining_data ::= 'data' character_string end.

defining_msc_reference ::= 'reference' msc_name.

using_clause ::= 'using' instance_kind end.

identifier ::= name.

message_sequence_chart ::= 'msc' msc_head msc_or_hmsc 'endmsc' end.

msc_or_hmsc ::= msc

 | hmsc.

msc ::= msc_body.

msc_head ::= msc_name msc_parameter_decl? end msc_gate_interface.

msc_parameter_decl ::= '(' msc_parm_decl_list ')'.

instance_parameter_decl ::= 'inst' instance_parm_decl_list end.

instance_parm_decl_list ::= instance_parameter_name

co_instance_parm_decl_list?.

co_instance_parm_decl_list ::= ',' instance_parm_decl_list.

instance_parameter_name ::= instance_name.

message_parameter_decl ::= 'msg' message_parm_decl_list.

message_parm_decl_list ::= message_decl_list.

msc_parm_decl_list ::= msc_parm_decl_block end_msc_parm_decl_list?.

end_msc_parm_decl_list ::= end msc_parm_decl_list.

msc_parm_decl_block ::= data_parameter_decl

 | instance_parameter_decl

 | message_parameter_decl

 | timer_parameter_decl.

timer_parameter_decl ::= 'timer' timer_parm_decl_list.

timer_parm_decl_list ::= timer_decl_list.

instance_kind ::= identifier.

msc_gate_interface ::= msc_gate_def*.

msc_gate_def ::= 'gate' msg_gate end.

msg_gate ::= def_in_gate

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 53

 | def_out_gate.

msc_body ::= msc_statement*.

msc_statement ::= text_definition

 | event_definition.

event_definition ::= instance_name_list ':' event.

event ::= instance_event

 | multi_instance_event_list.

instance_event_list ::= instance_event+.

instance_event ::= orderable_event

 | non_orderable_event.

orderable_event ::= help0? help1 starcomment? end help2?.

help0 ::= 'label' event_name end.

help1 ::= message_event

 | incomplete_message_event

 | timer_statement

 | action.

help2 ::= 'time' time_dest_list end.

time_dest_list ::= time_dest? time_interval co_time_dest_list?.

co_time_dest_list ::= ',' time_dest_list.

time_dest ::= event_name

 | top_or_bottom reference_identification_or_label_name.

reference_identification_or_label_name ::= reference_identification

 | label_name.

top_or_bottom ::= 'top'

 | 'bottom'.

non_orderable_event ::= start_coregion

 | end_coregion

 | instance_head_statement

 | instance_end_statement.

instance_name_list ::= instance_name comma_instance_name*

 | 'all'.

comma_instance_name ::= ',' instance_name.

multi_instance_event_list ::= multi_instance_event+.

multi_instance_event ::= condition

 | msc_reference

 | inline_expr.

instance_head_statement ::= 'instance' instance_kind? starcomment? end.

instance_end_statement ::= 'endinstance' end.

message_event ::= message_output

 | message_input.

message_output ::= 'out' msg_identification 'to' input_address.

message_input ::= 'in' msg_identification 'from' output_address.

incomplete_message_event ::= incomplete_message_output

 | incomplete_message_input.

incomplete_message_output ::= 'out' msg_identification 'to' 'lost'.

incomplete_message_input ::= 'in' msg_identification 'from' 'found'.

msg_identification ::= message_name co_message_instance_name?

parameter_helper?.

co_message_instance_name ::= ',' message_instance_name.

parameter_helper ::= '(' named_parameter_list ')'.

output_address ::= instance_name

 | env_ref via_gate?.

env_ref ::= 'env'

 | reference_identification.

via_gate ::= 'via' gate_name.

reference_identification ::= 'reference' msc_reference_identification.

input_address ::= instance_name

 | env_ref via_gate?.

named_parameter_list ::= named_parameter_assignment

co_named_parameter_list?.

co_named_parameter_list ::= ',' named_parameter_list.

named_parameter_assignment ::= parameter_identification '=' parameter_value

parameter_value_binding?.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 54

parameter_identification ::= parameter_name parameter_indices?.

parameter_indices ::= '[' index_name co_index_name? ']'.

co_index_name ::= ',' index_name.

parameter_value ::= string

 | wildcard

 | structured_parameter_value.

structured_parameter_value ::= '{' named_parameter_list '}'.

parameter_value_binding ::= right_bind_symbol pattern.

actual_out_gate ::= gate_name? 'out' msg_identification 'to' input_dest.

actual_in_gate ::= gate_name? 'in' msg_identification 'from' output_dest.

input_dest ::= 'lost'

 | input_address.

output_dest ::= 'found'

 | output_address.

def_in_gate ::= gate_name? 'out' msg_identification 'to' input_address.

def_out_gate ::= gate_name? 'in' msg_identification 'from' input_dest.

gate_identification ::= gate_name.

condition_identification ::= 'condition' condition_text.

condition_text ::= string

 | 'when' cond_expr

 | 'otherwise'.

cond_expr ::= condition_name_list

 | '(' expression ')'.

condition_name_list ::= condition_name co_condition_name*.

co_condition_name ::= ',' condition_name.

condition ::= condition_identification end.

timer_statement ::= starttimer

 | stoptimer

 | timeout.

starttimer ::= kw_starttimer timer_name bounded_time? measurement?.

duration ::= '[' min_durationlimit? co_max_durationlimit? ']'.

co_max_durationlimit ::= ',' max_durationlimit.

durationlimit ::= expression_string

 | 'inf'.

stoptimer ::= kw_stoptimer timer_name co_timer_instance_name?.

co_timer_instance_name ::= ',' timer_instance_name.

timeout ::= 'timeout' timer_name co_timer_instance_name?.

action ::= 'action' action_statement.

action_statement ::= informal_action.

informal_action ::= character_string.

message_decl_list ::= message_decl end message_decl_list?.

message_decl ::= message_name_list.

message_name_list ::= message_name.

timer_decl_list ::= timer_decl end timer_decl_list?.

timer_decl ::= timer_name_list.

timer_name_list ::= timer_name.

variable_decl_list ::= variable_decl_item end variable_decl_list?.

variable_decl_item ::= variable_list ':' type_ref_string.

variable_list ::= variable_string.

data_parameter_decl ::= 'variables'? variable_decl_list.

actual_data_parameters ::= 'variables'? actual_data_parameter_list.

actual_data_parameter_list ::= parameter_name '=' expression_string

co_actual_data_parameter_list?.

co_actual_data_parameter_list ::= ',' actual_data_parameter_list.

right_bind_symbol ::= '=:'.

expression ::= expression_string.

pattern ::= variable_string

 | wildcard.

wildcard ::= '_'.

time_point ::= '@'? time_expression.

measurement ::= rel_measurement

 | abs_measurement.

rel_measurement ::= '&' time_pattern.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 55

abs_measurement ::= '@' time_pattern.

time_interval ::= interval_label? bounded_time measurement?.

interval_label ::= 'int_boundary' interval_name.

singular_time ::= '[' time_point ']'

 | measurement.

bounded_time ::= '@'? left_open_or_left_square_bracket time_point

comma_time_point? right_open_or_right_square_bracket.

left_open_or_left_square_bracket ::= '('

 | '['.

right_open_or_right_square_bracket ::= ')'

 | ']'.

comma_time_point ::= ',' time_point.

start_coregion ::= 'concurrent' end.

end_coregion ::= 'endconcurrent' end.

inline_expr ::= loop_expr

 | opt_expr

 | alt_expr

 | seq_expr

 | par_expr

 | exc_expr.

loop_expr ::= 'loop' loop_boundary? 'begin' end msc_body 'loop_end' end.

opt_expr ::= 'opt_begin' end msc_body 'opt' 'end' end.

exc_expr ::= 'exc_begin' end msc_body 'exc' 'end' end.

alt_expr ::= 'alt_begin' end msc_body alts* 'alt' 'end' end.

alts ::= 'alt' end msc_body.

par_expr ::= 'par_begin' end msc_body pars* 'par' 'end' end.

pars ::= 'par' end msc_body.

seq_expr ::= 'seq_begin' end msc_body seqs* 'seq' 'end' end.

seqs ::= 'seq' end msc_body.

loop_boundary ::= '<' inf_natural co_inf_natural? '>'.

co_inf_natural ::= ',' inf_natural.

inf_natural ::= 'inf'

 | expression.

msc_reference ::= 'reference' msc_reference_identification_colon?

msc_ref_expr end kw_time_time_interval_end? kw_top_time_dest_list_end?

kw_bottom_time_dest_list_end? reference_gate_interface.

msc_reference_identification_colon ::= msc_reference_identification ':'.

kw_time_time_interval_end ::= 'time' time_interval end.

kw_top_time_dest_list_end ::= 'top' time_dest_list end.

kw_bottom_time_dest_list_end ::= 'bottom' time_dest_list end.

msc_reference_identification ::= msc_reference_name.

msc_ref_expr ::= msc_name actual_parameters?.

actual_parameters ::= '(' actual_parameters_list ')'.

actual_parameters_list ::= actual_parameters_block

end_actual_parameters_list?.

end_actual_parameters_list ::= end actual_parameters_list.

actual_parameters_block ::= actual_data_parameters

 | actual_instance_parameters

 | actual_message_parameters

 | actual_timer_parameters.

actual_instance_parameters ::= 'inst' actual_instance_parm_list.

actual_instance_parm_list ::= actual_instance_parameter

co_actual_instance_parm_list?.

co_actual_instance_parm_list ::= ',' actual_instance_parm_list.

actual_instance_parameter ::= parameter_name '=' instance_name.

actual_message_parameters ::= 'msg' actual_message_list.

actual_message_list ::= parameter_name '=' message_name

co_actual_message_list?.

co_actual_message_list ::= ',' actual_message_list.

actual_timer_parameters ::= 'timer' actual_timer_list.

actual_timer_list ::= parameter_name '=' timer_name co_actual_timer_list?.

co_actual_timer_list ::= ',' actual_timer_list.

reference_gate_interface ::= end_gate_ref_gate*.

Validas MSC to C Test Code Generator, Version 0.9.6 2007/10/29

page 56

end_gate_ref_gate ::= 'gate' ref_gate end.

ref_gate ::= actual_out_gate

 | actual_in_gate.

hmsc ::= 'expr' msc_expression.

msc_expression ::= start node_expression*.

start ::= label_name_list? end.

node_expression ::= label_name ':' node_helper end.

node_helper ::= node_helper2 'seq' '(' label_name_list? ')'

 | 'end'.

node_helper2 ::= timable_node

 | node.

label_name_list ::= label_name alt_label_name*.

alt_label_name ::= 'alt' label_name.

node ::= condition_identification

 | 'connect'.

par_expression ::= 'expr' msc_expression 'endexpr' par_helper*.

par_helper ::= 'par' 'expr' msc_expression 'endexpr'.

timable_node ::= '(' msc_ref_expr ')' time_helper?

 | par_expression time_helper?.

time_helper ::= 'time' time_interval end.

msc_name ::= string.

instance_name ::= string.

event_name ::= name.

message_name ::= string.

message_instance_name ::= string.

gate_name ::= name.

timer_name ::= name.

timer_instance_name ::= name.

interval_name ::= name.

inline_expr_name ::= name.

condition_name ::= string.

label_name ::= name.

message_sequence_chart_name ::= string.

msc_reference_name ::= string.

data_language_name ::= name.

parameter_name ::= string.

par_name ::= name.

index_name ::= index.

sdl_document_identifier ::= identifier.

variable_identifier ::= identifier.

expression_string ::= string.

type_ref_string ::= string.

variable_string ::= string.

wildcard_string ::= string.

data_definition_string ::= string.

max_durationlimit ::= durationlimit.

min_durationlimit ::= durationlimit.

time_expression ::= expression.

time_pattern ::= pattern.

open_par ::= character_string.

close_par ::= character_string.

// important lexical helpers:

///////////////////////////

name ::= (letter | underline) name_element*.

kw_stoptimer ::= 'stoptimer' | 'reset'.

starcomment ::= ('//' not_eol* eol) | ('/*' not_star* '*'+ (

not_star_slash not_star* '*'+)* '/').

number ::= decimal_digit+.

kw_starttimer ::= 'starttimer' | 'set'.

character_string ::= ''' (all_but_quote | quote quote)+ '''.

