(\

VALIDAS %

User Manual

The Validas

Process Modeling Tool.
Version 1.2

Validas Qualification Processes

Validas Verifier
. WR
----- Verify & Validate -~~~ ~ ™| (QKit)
-9

Validas QM _ -~ ,
| Safety Standard ']- - -{Create Compliance)4— ---- i
T -a ’
Compliance Report o
’

Validas Project Manager - S

L4 Ay

Parameters %
e (Excel) ‘\
N \
------- o) |
' Tool User

-~ - \
~

- - -bl Qualification DocumentsT

Qualify Tool

/

Overview:

The Process Modeling Tool (PMT) is a process modeling tool for safety
relevant processes. It supports the compliance argumentation with safety
standards in the model and generates compliance reports as well as
process reports and model-based verification and validation plans. Those
are managed using the Verification and Validation Tool (VVT), which can
read the .vvt files generated from PMT.

Based on the process model PMT can also be used to manage the process.

1 This work has been developed within the German research project SPEDIT. SPEDIT was
supported by the Bundesministerium fur Bildung und Forschung (BMBF).

User Manual of Process Modeling Tool
Version 1.2

4

Page 1

Contents

1 INtrodUcCtioN.....iccicccccicsssssssnss s nsaaaaannsssssssssnnnnnsnsnsnnanssnnnnnnnnnn 5
A C 1 o - 1 o 6
3 Safety Strategy .cccvicriiriimicimirsa e s nas 8
4 Compliance Method.........cccciiiiiiissiiissrrse s s s s s nr s n i n s 10
5 Process NOtationN iiuuieeeeeeeeeeemmssssssssssssssssssssssssnssssssssssnsnssnssssnnnnnnnnnnn 13
o T R 1< o 1= = 1 14

o T S o Yol < 1Yo VA LS 15
ST T N o | =Y ot VA =1 16
5.4 StaKe HOIAr ViBW iiiiiiiiiiii it eiiieees st siaasss s e e e nannnaaesseeenes 17
6 Installation & Starting PMTc.cciiiimirimisssse s s s s s s nsnnnas 18
7 UsSer INterfacCe cciuiiiiieseeeeeeeeennnnsasssssssassssssssssnnnssssssssssnsnnnnnnnnnnnnnnnnnnn 22
72 T 0 Yo | I 1 1= o 10 1 23
720 T R 1 (S 1 =T 1 23

2 A =l [ol 14 1= 24

728 G T o\ I = 1 oo Yl =Y 1 24

7. 1.4 WiINAOW MONU .t tttiiiiiiiteiieeeeee s teaes e e easssesnnsssennnssesnnsssennnssennns 24

7. 1.5 Help MENU. ..o e e e 25
2 W ol =TT =] 0) VAT =] 25
7.2.1 ON VarioUs ElemMENES cuvuiiiiiii it eee et iae s eraaseennansennns 27
7.2.1.1 Show DOT (Graphviz)ccoviiiiiiiiiiiicic e 27
7.2.1.2 Export DOT (GraphvViz) ...cccviiiiiiiiii i 28
7.2.1.3 Inferand Set TyPeS ..ccvviiiiiii i e 28
7.2.1.4 CheCK TYPeS ciiiiiiii it e aneeanes 29
7.2.2 ON ProCess ElemeENnt covuuiiiiiiii et et iee s e neeans 30
7.2.3 ONn ProcessModule ElemMeENt ..ovvviiriiiiiiiiiiiiii e eeeeninaesseeenes 31
2 N ©] T\ [Yo [=Y I = 1Y 1 =] o | 32
7.2.5 0On Requirement Elementccooiiiiiiiiii e e 34
7.2.6 On Parameter, Binding, EnumValue and EnumType Elements . 37
7.3 ProcCess MOAUIE ViEW cuuuuiiiiiiieiiiee et teeiisaaesseeesananasssseeennnnnns 38
7.4 ComplianCe VIEW ..uvieiiiiiiiii it e e e anens 39
7.5 ProjeCtion VieW.....voiiiii i e s s r e n e ens 39
7.6 DiagnoOStiC VIEW ..t e r e s s e s nnnneeens 43
8 Features Of PMTc.cccccisssssssssssssssnsnssssssssssnssssssssssnnnsnnssssssnnsnnnnnnnnnns 44
8.1 Terms @nd TY DS cuuuiitiiiiie ittt et se et e s eane e e aneaanens 44
8.2 Process ModeliNg ..coveeiiiiiii i 49

S A B = 0 Lo LYY =T 49
8.2.2 MOdEl-Based PrOCESSES ...ciiiiiiiiiiiiiiiiieiietiireerreriererereeeeeeeeeees 52
8.2.3 ReqQUIrEMENES . i s e 54
8.2.4 CoOMPlIANCE .viiiee i 56
8.2.5 Reuse & LiNKiNg ..oooiiiiiii i 59

User Manual of Process Modeling Tool
Version 1.2

Page 2

8.2.6 TailOriNg veiiieiiii i i 61
8.2.7 Instantialion......cceviiiii e 62
8.2.8 Variables & Variantscoiiiiiiiiiiiii i 66
8.2.0 LayOULING ..ottt i i i 66
B.2.10 OO0l 1ttt i e 69
8.2.11 Project Management . .cccvvi i 70
8.2.11.1 Project OVerVIEW ...uviiiiii i i e e nanne e eannes 71
8.2.11.2 Project Status Detailscovvviiiiiii 72
8.2.11.3 Excel-Interface for Project Management...................... 73
8.2.11.4 Project Status Update......cooivviiiiiiiiii e 74
8.3 Consistency & Process Interfaces......oooeviiiiiiiiiiiiiiiiiiiiiciieeas 75
8.4 RefiNemMENt .o 77
8.5 Validation ..o e 82
8.5.1 Syntactic Validation.......c.coiiiiii 83
8.5.2 Graphical Validationccviiiiiii 85
8.5.3 Semantic Validationccoiiiiiiiii 85
8.6 INEErfaCeS cuiiiiiii i 85
8.6.1 ProcessModule Ex- and Importc.coviiiiiiiiiiiici e 85
BB, 2 VIV T it e 86
B.6.3 EXCel uiiiiiii i e 88
8.6.3.1 Parameters Interfaceccoviiiiiiiiiiiiii 88
8.6.3.2 Process Statusccevviiiiiiiiiii e 91
8.6.3.3 Process Description EXPOrt.....ccviviireiiiiineiiiiineeinineennnnns 92
8.6.3.4 Development Interface Agreement.........ccocviiiiiiiinnnnn. 93
8.6.3.5 Offer e e 94
8.6.4 ECOre IMPOIter .t r e e s aneens 96
8.7 Report GENErators .vvviiii i e 97
8.7.1 ProCeSS REPOIT vttt it a e s e e s ane e e e nneens 97
8.7.2 ComplianCe RePOIt...cieiiiieiiie i aneeaneennes 98
8.8 PrefereNCeS ..t e 99
8.9 Filter SCOPING .o 100
9 Meta Model of PMT ...cuiciiemmiemmnmmnmsasmsnsssnsssnssnssasssnsssnssnnssnnssnnsnnnss 103
9.1 Syntax of Meta Model......oooriiiiiiii e 104
1S I A 0 [0 1< =1 o o] = 106
O.2.1 ProCeSSStaltlUS . .iiiiii it 106
9.2.2 SafetyLevel ..o 107
9.2.3 Cardinality .uooeeiiie i e 107
9.3 General Interfacesc.vviiiiii i e 107
1S G 2 R 1= T o 1= P 108
9.3.2 Variantable -> Namedcooiiiiiiiiic e 109
9.3.3 Verification Interfacecovvviiiiiii 110
9.4 Scoping, Hierarchy and ReUSEccviiiiiiiiiiiii i naeas 111
S 2 T IV o < 112
9.5.1 Type => NamMEd ..ooiiiiii i e aaes 113
O0.5.2 ENUMTYPE => Ty P 1ttt i e rnne e e annes 114
9.5.3 EnumValue -> Namedccooiiiiiiiiiii e e aaes 114
O0.5.4 LiStTYPE =3 Ty P ceiiiiiii i ittt aes 115

User Manual of Process Modeling Tool
Version 1.2

Page 3

1S I < TR 1= o o 2 116
1 T < YA R 1= o 2 117
9.6.2 ENuMValUERES => TeIMMN viiiiiiiiiiiiiiii it iiiianeeeees 118
1 I G I Ol0] o 1 = | A 1= o 118
O0.6.4 LiStTerm => T eI vuuuuiiinsnnssssssssssssssssssnsssssssssssssnnns 119
O.6.5 BOOITEIM > T eI tuuuriiiiinssssssssssssssssssssssssssssssssssssssnnns 119
O9.6.6 ParamRef => TOIMN cuuuiiiiiiiiiiiiiiiiiissssssssssssssssssssssssssssnnes 120
O9.6.7 INLiSt -> BOO T @M. uuuuiiiiiiiiiiiiiiiiissssssssssssssssssssnnnes 121
O9.6.8 ORTErmM -=> BOOITEIM .uuiiiiiiiiiiiiiiiiiiissssssssssssssssnssnnnes 121
9.6.9 ANDTErmM -> BOOITeIM .uuiiiiiiiiiiiiiiiiiiisssssssssssssssssssssnnes 122
9.6.10 NOTTerm -> BoOITerm . .iiiiiiiiiiiiiiiiiiiiiiiiisisssanannes 122
9.6.11 EQTerm -> BoolTerm .. .o 123

0.7 BiNAINGS 1t 123

1 I S T == | =1 0 4 1S =] 124
9.8.1 Parameter -> Namedciiiiiiiiiiiiiiiiiiisssssssssssssssssnnss 125
9.8.2 ProcessParameter -> Parametercccoiiiiiiiiiiiiiiiiiiiiiiiinaas 126
9.8.3 PlanningParameter -> Parameter........ccooiiiiiiiiiiiiiiiieee, 126
9.8.4 ProjectParameter -> Parameterccoevviiiiiiiiii i enaes 126
9.8.5 ProcessVariable -> Parameter ...ccovvvviiiiiiiiiiiic e 127

0.0 PrOCESS FramMB . it iiiiiiiiiiiiiiieissiiisssseesssssisssssssssssnsssssessssnnnns 127
9.9.1 Process -> NAMEA ..uuuiiiiiiiiiinsssssssssssssssssssssssssssssssssnnns 128
9.9.2 ToBelmplemented: Preference.........ccovviviiiiiiiiiiiiic i 130
9.9.3 History RECOIAS ..vviieiiiii i e 130

9.10 ProCESS MOAEIS ittt 134
9.10.1 Process Module -> Variantable........ccooviiiiiiiiennnnns 135
9.10.2 Artifact -> Variantable ... 139
9.10.3 StakeHolder -> Variantablecccoiiiiiiiiiiiiiiiiiiiiiiiiiias 141
9.10.4 VerificationModule -> ProcessModulecvvvvviiiinnnnnnn. 142
9.10.5 Criterion -> Variantable ... 144

9.11 Requirements & ComplianCe.......ccvviiiiiiiiiiiiici e 144
9.11.1 Requirement -> Variantablecccoiiiiiiiiieinen 145
9.11.2 Complaince -> Variantable ..o, 146

9.12 Model-Based ProCeSSESuiiiiiiiiiiiiiiiii ittt it iiiiesiaasannaas 148
9.12.1 Model -> Artifact...ccciiiiiiiiiiiiiiiiiiiiiiiiiir i aaaes 148
9.12.2 K =] = 0 Yo 1= 149
9.12.3 MetaModelElement -> Namedcoiviiiii i 150
9.12.4 MetaModelAttribute -> Namedccovviiiiiiiiiiiiiiiiiiiaaas 150
9.12.5 MetaModelAssociation -> Named.......cccoevvvvviiiiiiinnennnns 151

1S 0 15 T I Yo |1 151
9.13.1 Tool -> Variantable ..., 152
9.13.2 Method => Named ...vvviiiiiiiiii e iireeeeens 153

10 KNOWN ISSUECS. uuuiiiiiiiiinnsnnnnsnssssssssssnsassnannsnssssssssssnsnnnnsnnnnnnnnnns 153
11 Licenses & Liabilityccccciiiiiiiimiimsns s sss s s ssasssssnnnsnansnas 154
12 Examples & Further Documentationccvccvimirmnria s sssnsnannnes 155

User Manual of Process Modeling Tool
Version 1.2

Page 4

1 Introduction

The Process Modeling Tool (PMT) is a tool that supports model-based
process modeling, safety standard compliance as well as the preparation
of safety plans and safety cases via the interface to the verification and
validation tool (VVT). See Section 3 for an overview how PMT fits into the
safety strategy.

The PMT can be used for different purposes:
e Process Modeling, formalization and documentation with
o Parameterized process
o Automated tailoring
o BPMN like notation of processes
o Syntactic and semantic validation of process models
e Compliance with safety requirements and compliance
argumentations (“safety plan”) including GSN visualization
e Preparation of project specific verification and validation (“safety
case”) including interface to Verification and Validation Tool (VVT)
e Project Management Tool: planning and status management of
projects (including process instances)
e Report generators for
o Compliance reports
o Process reports
o Verification and Validation Report (see VVT)

This user manual describes the PMT tool with the following aspects:

A glossary of the used terms in Section 2.

e The safety strategy in which PMT can be used in Section 3.

e The compliance Method, see Section 4.

e The used graphical process notation, see Section 5.

e The Installation, see Section 6.

e The user interface of PMT, see Section 7.

e The Features of PMT, see Section 8.

e The details of the model, see Section 9.

e The known bugs of PMT, see Section 10.

e Licenses are described in Section 11.

e References to examples & further documentation can be found in
Section 12.

User Manual of Process Modeling Tool
Version 1.2

Page 5

2 Glossary

The following abbreviations are used in the document.

e AOC: Anomalous Operating Condition

e Artifact: Element exchanged between processes

e BPMN: Business Process Model and Notation

e CR: Compliance Report2

e CT: Construction Task (during QKit creation)

e GSN: Goal Structuring Notation

e KB: Known Bug

e LCR: Library Classification Report

e LQP: Library Qualification Plan

e LQR: Library Qualification Report

e LSM: Library Safety Manual

e LTG: Library Test Generator

e PCCP: (Development) Process Compliance Check Plan

e PCCR: (Development) Process Compliance Check Report

e PMT: Process Modeling Tool

e Process Module: modular tasks in the process

e PT: Preparation Task (before QKit creation)

e Role: see Stakeholder

e QKit: Qualification Kit

e QP: Qualification Plan (general), can be LQP or TQP

e QR: Qualification Report (general), can be LQR or TQR

e QST: Qualification Support Tool

e SEOOC: Safety Element Out Of Context according to ISO 26262

e SM: Safety Manual (general), can be LSM or TSM

e Stakeholder: abstract person taking over responsibilities in the
process

e SWC: Software Component, e.qg. a library3

e TAU: Test Automation Unit

e TCA: Tool Chain Analyzer

e TD: Tool Detection (part of TCL computation according to ISO
26262)

e TCL: Tool Confidence Level (according to ISO 26262)

e TCR: Tool Classification Report

e TI: Tool Impact (part of TCL computation according to ISO 26262)

e TQL: Tool Qualification Level (according to DO-330)

2 Do not confuse with Classification Reports LCR and TCR.

3 Note that libraries can be both changes and unchanged software components.

User Manual of Process Modeling Tool
Version 1.2

Page 6

e TQP: Tool Qualification Plan

e TQR: Tool Qualification Report

e TSM: Tool Safety Manual

e V&V: Verification and Validation

e Verification Module: special form of Process module used to verify an
artifact in the process

e VVP: Verification and Validation Plan

e VVR: Verification and Validation Report

e VVT: Verification and Validation Tool

e VT: Verification task (after QKit creation)

User Manual of Process Modeling Tool Page 7
Version 1.2

3 Safety Strategy

PMT is the first step towards safe and efficient development processes.
Safety is planned using PMT, by applying the compliance method, see
Section 4. Efficiency is achieved using automatization with a safe tool
chain and safe libraries. Safety of tools is achieved by classifying the tools
(using the Tool Chain Analyzer) and by qualifying critical tools using
qualification Kits. Safety of libraries is achieved by qualifying the used
functions using library qualification kits. More information about the other
qualification tools (TCA, QKits, VVT) can be found in
http://www.validas.de/en/tools/.

|
Development\\ |
\é\ > & 1
P O N '
A
p
,/
ﬂ———-‘———\
If Verification |
] Validation :
I\Tool |
e
\\
________ i_______l
Q L
(A |
‘.OO/ '%chz :
. U |
% I

Safety Case

Figure 1: Safety Processes and Support Tools

Figure 1 shows how the Validas Tools build the interface between a safe
development process and the safety case (TCA and QKit being the
commercial tools, and PMT, VVT the free utilities that complete the tool
chain):

1) PMT is used to plan the process and to show its compliance with the
safety standard. The generated process description can be used

User Manual of Process Modeling Tool
Version 1.2

Page 8

http://www.validas.de/en/tools/

within development process, e.g. as reference, while the generated
compliance report is the main part of the safety plan. Also the check
list templates for Verification and Validation are generated from PMT
and will be used later from VVT to ensure safety of the project.

2) Once the process is described in PMT the corresponding tool chain
can be developed and modeled using the tool chain analyzer. In a
future version TCA will be able to automatically create a model from
the process model (that already contains a coarse tool model), e.g.
by creating a use case in the tool chain for every process step that
is linked to a tool in PMT. TCA can be used to document and analyze
the tool chain and to make it safe by classifying the tools and
providing safety manuals for the uncritical tools, i.e. those tools that
can be used sufficiently carefully without having manual extra work.
Also other tools can be classified as uncritical, e.g. by enriching the
process with extra activities.

3) The critical tools, i.e. the tools that the user wants to rely on the
function without checking its outputs can be qualified using so called
qualification kits. QKits typically base on validation, i.e. testing the
tool and can for example be easily build using the Validas
framework. QKits contribute to the safety case with all required
documents, mainly the tool qualification report and generate a
tailored safety manual covering exactly the use cases of the tools.

4) At the end of the development process (or after some development
steps) the product has to be verified and validated. This is done
using the Verification and Validation Tool. It provides the check lists
to the project, manages their results and generates the Verification
and Validation Report to complete the safety case.

Since classification (TCA) and qualification (QKit) is the core business of
Validas and since PMT is the entry ticket to safe development (including
classification and qualification), Validas decided to make it freely available
to the world (including VVT).

User Manual of Process Modeling Tool
Version 1.2

Page 9

4 Compliance Method

The applied compliance method is model based. It bases on a
parameterized model that is used to model the following things:

e Requirements from safety standard (or from somewhere else),

e Development process of the qualification kit (or something else),

e Compliance argumentation,

e Verification actions and

e Parameters.

The key ideas of the compliance method are:
1) Every requirement is linked to two things:
a. an element in the process that implements it and
b. a verification step in the process that verifies the
corresponding artifact

2) Project parameters: Every project is different, even if it follows the
same process. Those differences are modeled using parameters in
the process. The parameters are instantiated with values during the
project. In our qualification projects typical parameters are “TEST”
or “FEATURE".

Parameters can be used for project management, e.g. qualifying 20
features and creating 100 tests, but parameters have to be used for
verification and validation in order to ensure requirement (and standard)
compliance.

The compliance method is therefore structured in two parts

1) The process specific part, that is the scheme for all projects.

2) The project specific part, which is just an instantiation of the process
by defining the parameters and performing V&V for all instances as
pre-scribed within the process.

The process (part 1 only) can be assessed independently. For example
Validas has a TUV certification for the processes of Tool qualification (since
2018), based on this compliance method.

This compliance documentation is, together with the process report, the
basis for a process certification for the process.

The compliance method is graphically shown in Figure 2. The compliance
is achieved in the following steps:
1) Process Part. We use the Process Modeling Tool (PMT) for this:
a. Model or select requirements for the process.
b. Model or configure the process (based on existing processes),
including the verification steps.

User Manual of Process Modeling Tool
Version 1.2

Page 10

c. Argue the compliance of the process by providing for every
requirement at least one implementing process and one
verification action.

d. Generate the process report (PR).

e. Generate this compliance report.

f. Generate the verification and validation plan.

2) Project specific part (only the verification and validation, which is
essential for the compliance). We use the V&V Tool VVT for this

a. Instantiate the Verification and Validation Plan (VVP) by

i. Assigning concrete names to stakeholders that perform
V&V

ii. Import the project parameters. For qualification projects
based on Validas Tool Chain Analyzer this can be done
by exporting the parameters from the TCA tool into an
Excel table)

b. Perform V&V by going through all checks for all instances of
the parameters (this can be done using Excel Export & import
of VVT)

c. Check Completeness and generate the Verification and
Validation Report (VVR) using VVT.

The safety plan is the description of the process including the compliance
argumentation and the safety case is the safety plan including the V&V
report with the verification results.

Link Requirements
to Processes and

Verification Actions
Tailor
Parameters
g |

|

Toolchain Anaiy;;:ér QKit

. d

1SO 26262,
IEC 61508, ..

:

SONIEN
J918Weled

EIEIVED)

Process
Description

Compliance
7 | Report

SafetylPlan |
| Safety Case

Verification

PrO-ECt: V&V Validation

Verification

Validation

Pian

H<Wl

Report

User Manual of Process Modeling Tool Page 11
Version 1.2

Figure 2: Compliance Method

As notation for the compliance argumentation we use a GSN-like (Goal
Structuring Notation) notation with the following elements (see Figure 3).

— Requirements Requirement

— Compliances

— Verification Modules | vm

— Criteria O

Figure 3: Used Goal Structuring Notation (GSN) Subset

For example an argumentation (“*Compliance”) to meet a code coverage
requirement by good test cases verified in two steps with four criteria
could look like depicted in Figure 4.

ISO-6.9.4.4-9.1a: Every statement of
the code has to be covered

Test cases are created from
the specification (checked
for completeness) and
cxccuted. Coverage reports
arc analyzed for statement
coverage

[Analyze Statement Coverage] [Validate Tests)

AnaCCR-SC-C1 AnaCCR-SC-C?2

Is the statement
coverage 100% (or are
reasonable explanations

given in case it is less
than 100%)7?

Can the test detect dviations
(failuresferrons) in case

Hawe all statements of the

module been considered / Does the test cover

they would oeeus, e.g. by the IC(]'[Iilt':ﬂl(’lll‘
using some statementslike COllll)ll“ﬂ\’.-}
“assent’'? e

instrumented [of are some
files not instrumented that
belong to the module)?

Figure 4. Example Compliance Argumentation using GSN

User Manual of Process Modeling Tool
Version 1.2

Page 12

5 Process Notation

The used process notation is based on a model and consists of the
following elements

StakeHolder: A person responsible for Processes and Artifacts
ProcessModule: A modular task/process with input & output artifacts
Verification Module: a special module that verifies an artifact and
checks that a requirement is satisfied by asking some review
questions (called “Criteria”)

Model: a special form of an Artifact, allowing to define which
modeling elements (e.g. Tool, Feature,.. in TCA Models) are
mandatory (e.g. Tool-Name) and which are optional (e.g. Feature-
Comment).

Parameter: A parameter of the process indicating that the process
has to be iterated for all values of the parameter. Parameters are
used to tailor the process and to instantiate it. Parameters can be
bound to values or list of values using Bindings. There are the
following parameters:

o Process Parameter: Describes a tailoring parameter, typically
instantiated with concrete values. All elements that have
variant terms with process parameters evaluating to false are
removed.4

o Project Parameter: A Parameter indicating instances of the
process, typically instantiated with lists of values indicating
that the process modules have to be repeated for each value
of the parameter

o Process Variable: Describing a condition in the process with
alternative following processes. Process variables are not
instantiated but determined when executing the process, e.qg.
“<REVIEW_OK> -> YES -> Release”

All elements are contained in a container called Process.

4 This process has already been tailored, such that all process variables have values and all
unused process elements are removed.

User Manual of Process Modeling Tool
Version 1.2

Page 13

StakeHolder

Parameter

References

Binding

Model

VerifcationModule

Figure 5. Main Process Description Elements and Relations

The graphical images are using a Business Process Modeling Notation
BPMN like notation with “swim-boxes” instead of “swim-lines” to improve
graphical layout.
The following graphical views are supported:
e Process View: describes the process modules, see Section 5.1.
e Artifact view: describes the structure of artifacts and their use, see
Section 5.3.
e Role View: describes the roles with their responsibilities, see Section
5.4.

5.1 General

The graphical notation visualizes the following elements:

P Process Module: blue, rounded box: (Read Safety Manual)
» Verification Module: green, rounded box: (Review Safety Manual)
» Hierarchical Process Module: blue folders: |
» Hierarchical Verification Module: green folders: \
P Artifact: Grey box with note:
Product Manager
» Model: Orange box with note: |
» StakeHolder: transparent box: '
» Conditions: yellow routes: YES
Figure 6: Visualization of Process Model Elements
User Manual of Process Modeling Tool Page 14

Version 1.2

The graphical notation visualizes the following relations between
elements:

» Before After: solid arrow: Sft—>{(Before j—»{ after) ".
» Read/Write: dashed arrow: ([Specification }- - -»(Develop }- - »{ Product]

» Artifact Containment: dotted arrow:

User I\/Ianuaﬂ
i

Introduction
(User Manual)

Figure 7: Relations between Model Elements

5.2 Process View

The process view describes a Process Module / Verification Module using
the graphical notation of Section 5.1. The name of the selected module is
written in double size. An example can be found in Figure 8.
It shows the process module “"Develop Safe Product” and its sub-processes
grouped into the swim-boxes of the involved stake holders.

Develop Safe Product

Safety Manager

Process Model 1

B

Ty
User Manual N

= b

= “
Product Manager
Specification ']— - - -

Figure 8: Process View for “Develop Safe Product”

In addition to this input output related modeling style, processes can also
be modeled without artifacts using a sequential style by using the
after/before relation as shown in the example in Figure 9. This shows a

User Manual of Process Modeling Tool Page 15
Version 1.2

simple process “Sell Product” as interaction between a sales manager and
a customer.

Sell Product

Sales Manager

Start

(Create OfferL

Customer

[Deliver Product)T—[Accept Offer)
o
T~

Pay Money |

3

Figure 9: Sequential Process Module View for “Sell Product”

5.3 Artifact View

The artifact view describes an Artifact or Model using the graphical
notation of Section 5.1. The name of the selected Artifact or Model is
written in double size. An example can be found in Figure 10.

It shows the user manual and its content (here only the introduction) and
that it is used from the product manager for development.

Safety Manager Product Manager

--(Goeip)

etieter, |-+ = User Manual }{-

Figure 10: Artifact View for “User Manual”

User Manual of Process Modeling Tool Page 16
Version 1.2

5.4 Stake Holder View

The stake holder view describes a Stakeholder using the graphical
notation of Section 5.1. The name of the selected Stakeholder is written in
double size. An example can be found in Figure 11. It shows the two

hierarchic processes owned by the Product Manager to produce a product
and his responsibilities for the specification.

Product Manager

Specification T

‘ Develop Safe Product ‘I
= -
-
‘ Develop Product“

Figure 11: Stakeholder View for "Product Manager"

Product |

User Manual of Process Modeling Tool

Page 17
Version 1.2

6 Installation & Starting PMT

To install the tool just unzip the distribution into a program folder in which
you have write permissions and ensure that the PMT can create a
workspace directory there, i.e. that there are no root privileges required
to create the workspace there.

Furthermore, Java 1.8 (JRE) has to be installed on your computer and in
the path, since new versions of PMT do not contain jre any more due to
legal restrictions.

The ZIP file contains the PMT application: “ProcessModelingTool.exe” (see
Figure 12).

configuration
features
p2
plugins
readme
| artifacts.xml
[55] eclipsec.exe
ProcessModelingTool exe

2| ProcessModelingToolini

Figure 12: Distribution of Process Modeling Tool

In the plugins directory of the distribution, there are folders
“de.validas.spm.pmt.documentation” containing this documentation.
Furthermore, there is a plugin “de.validas.spm.pmt.examples” with some
example models.

You can check the version of PMT in the About-Box see Figure 14 that can
be started in the Help-Menu as shown in Figure 13

% Process Modeling Tool
File Edit PMT Editer Window = Help
& ModuleTest.pmt @ Demno. Process Modeling Tool About...

‘[Resource Set Show Active Keybindings... Ctrl+Shift+L
e platform:/resource/ProcessMoterer Usersroscary DEsktopy Modure Test ot

Figure 13: Starting About Box

User Manual of Process Modeling Tool
Version 1.2

Page 18

% Process Modeling Tool e

4 1 Process Modeling Tool (PMT) Version 1.0

Figure 14: About Box with PMT Version

Note we document here only the PMT specific features and not general
Eclipse mechanisms like the “"Show Active Key Bindings” as visible in the
Figure 13.

Requirements: If you want to include the automatically generated images
in the report you have to install GraphViz. GraphViz is open source graph
visualization software which is used by the PMT to generate the images.
You can find the software and the installation manual at
http://www.graphviz.org.

Note: GraphViz (dot.exe) has to be added into the search path of your
system such that PMT can find it.

A

VALIDAS ¥

10

Process Modeling Tool

© Copyright VALIDAS AG, Eclipse contributors and others, 2000, 2019. All rights reserved. Eclipse is a
trademark of the Eclipse Foundation, Inc. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

Figure 15: Splash during starting up of the Process Modeling Tool

After some seconds, the empty PMT starts (see Figure 15) and the user
interface is ready for modeling. Initially it will be empty as depicted in
Figure 16.

User Manual of Process Modeling Tool
Version 1.2

Page 19

http://www.graphviz.org/

'{,f Process Modeling Tool - O x
File Edit Window Help
= O || Properties &% | g= Outline ERLt = O3
Property Value
|___§|,, Process.. &2 |4 Complia... |___§|,, Projection“_:_j Diagnostic| 8
=
#
W
£

Figure 16: Empty PMT

. .
" Process Modeling Tool

File Edit Window Help
Mew

Open...
Open UR...

Open File...
Convert Line Delimiters To

Close

Close All

Save
Save As...
Save All

Euit

Ctrl+ 0O
Ctrl+U

Ctrl+W
Ctrl+Shift+ W

Ctrl+5

Ctrl+Shift+5

- | x
ModellDescr Maodel HEMm - O
MetaModel Model
PMT Model
Suptertype Model
Terms Model

22 | L4 Complia.. E,},,Projection E‘,Diagnostic| = B8

‘I_'l'

~

Figure 17: Create new PMT Model

User Manual of Process Modeling Tool

Version 1.2

Page 20

To create new PMT models use the File -> New -> PMT Model dialog, see
Figure 17 and select “"Process” as main element, see Figure 18.

T New

>
PMT Model

O
Specify a file name and select a model ohject to create ¢

Eile

| Ch\Users\oscan DesktoptModel. pmt | Browse...

Meodel Object

Process

Alternative
Artifact
Compliance
Criterion
Method
Model
_[Parallel
Process Module
Required Document

Figure 18:Select File and Model Object: Process

User Manual of Process Modeling Tool

Page 21
Version 1.2

7 User Interface

The PMT user interface provides some standard menus. Main functionality
is performed by actions that are directly started in the model tree
browser.

PMT models are organized in a tree structure (see Section 9) but can be
displayed with many different views. Some general actions (like opening
views or setting preferences) are started from the menus in PMT, most
actions are “popup actions” and are started directly from the tree browser.

Therefore, the user interface of PMT has the following components:
e Tool Menus, see Section 7.1,

e Tree Browser, see Section 7.2,

e Property Editor View, see Section 7.2.4,

¢ (Graphical) Process Module View, see Section 7.3,

e (Graphical) Compliance View, see Section 7.4,

e Projection View, see Section 7.5,

e Diagnostic View, see Section 7.6.

Figure 19 shows the views of the PMT. The tree browser is located on the
upper left part, the property editor view on the right side. The other views
are located at the right lower corner. All views can be modified and
resized using the typical Eclipse mechanisms.

¥ Process Modeling Tool — | X
File Edit PMTEditor Window Help

& ModuleTest.pmt 52 = O || Properties £2 | B Outline B v= 0

BASIC P
eler/Users/oscar/Desktop/ A

Neme [Perform Module Test |

Description [At activities for performing the module tests |

Stake Holder {§ Stake Holder Tester CIEYES
2| (= =8 =% (=
Test Results OK [AnaTR-C2] Input Artifacts Output Artifacts
5 Artifact SUT) Artifact Safety Case
8 Tool Compiler & Anifact Specification
41 Tool Test Tool
v & Artifacts
& Artifact Specification - -
5 Model Test Specification =]
© Adifact SUT After Process Modules Before Process Modules
~ © Adtifact Safety Case v

€ Antifact Test Case

© Artifact Test Report ~., Process Module View 53 |, Compliance View | [, Projection | (2 Diagnostic = = 0

& Atifact Code Coverage Report ~
£2 Model TCA Model
& o Perform Module Test

~ | Stake Holders
§ Steke Holder Module Qwner
4 Stake Holder Tester Tester
§ Stake Holder Safety Manager
[Parameters

v Types v 1
< >

Selection | Parent | List | Tree | Table | Tree with Columns

Figure 19: Views of PMT

User Manual of Process Modeling Tool
Version 1.2

Page 22

7.1 Tool Menus

PMT offers the following tool menus (see Figure 20):
e File Menu, see Section 7.1.1,

e Edit Menu, see Section 7.1.2,

e PMT Editor Menu, see Section 7.1.3,

e Window Menu, see Section 7.1.4,

e Help Menu, see Section 7.1.5,

This section describes the offered functions shortly (most functions are
default Eclipse modeling functions that are from the EMF).

' Process Modeling Tool

Eile Edit PMT Editer Window Help

Figure 20: PMT Menus

7.1.1 File Menu

The file menu allows to open & close files and to create new files with PMT
models. These are basic tool functions and work as expected.

Only important aspect is here, that for creation of a new model the
function New -> PMT Model has to be chosen and the Root element
“Process” should be selected, as described in Section 6.

“ Process Modeling Tool
File Edit PMT Editor Window Help
Mew b MaodellDescr Model
Open... Cirl+0 MetaMaodel Model
Open UR.. Ctrl+U Pl
Suptertype Model
Open File... Terms Model
Convert Line Delimiters To »
n
Close Ctrl+W nent
Close All Ctrl+Shift+ W~ F
Save Ctrl+5 Jest
@ Save As...
Save All Ctrl+5Shift+5
Exit

Figure 21: File Menu of PMT

User Manual of Process Modeling Tool
Version 1.2

Page 23

7.1.2 Edit Menu

The edit menu allows to do simple editing commands (see Figure 22). All
of them are available using standard shortcuts.

Edit PMT Editer Window

<7 Undo Set Ctrl+Z
Redo Ctrl+Y

tof Cut Ctrl+X
I {5 Copy Ctrl+C
Paste Ctrl+V

¥ Delete Delete
Select All Ctrl+ A

Figure 22: Edit Menu

7.1.3 PMT Editor Menu

The PMT Editor menu offers PMT Editing features, see Figure 23. The
features are context dependent and a subset of the popup action menus.
Their functionality is described in Section 7.2.

PMT Editor Window Help

Mew Child 4% AND Term

New Sibling » %F ORTerm

Validate ECQ Termn

Control... MOT Term

Load Resource... In List

| Requirement

Refresh = .

Show Properties View @ Required Document
- - 4 Compliance
P Criterion Test Results Comple c e

Figure 23: Tools Menu

However, since those functions are also available in the tree browser this
menu is likely to be removed in future versions of PMT.

7.1.4 Window Menu

The window menu (see Figure 24) offers some useful functions regarding
the window handling of TCA:
1) Open in New Window: opens PMT in a hew window

User Manual of Process Modeling Tool Page 24
Version 1.2

2) Preferences: opens the preference dialogs, see Section 8.8.

Window Help
Open in New Window |

Preferences |

Figure 24: Window Menu

7.1.5 Help Menu

The help menu (see Figure 25) shows the about box of PMT and the active
key bindings that might help non-Eclipse experts to get familiar with
generic Eclipse features.

Help
Process Modeling Tool About...

Show Active Keybindings... Ctrl+Shift+L

frrrararirieare rmrrarf I TarbFmm T & 11

Figure 25: Help Menu

Further helpful information (that should be accessible here in future
version of PMT) are:

e The PMT Examples in the examples plugin folder,

e This user guide, available in the documentation plugin.

7.2 Tree Browser

The tree browser allows to browse and edit the model structure and to
start some actions on the model element with the right mouse button.

The available modeling elements are described in Section 9, the actions in
the following sub-sections.

Note there are several actions inherited from Eclipse that are currently
useless in PMT and might be removed or implemented in future versions
of PMT, e.g. “Team ->", "Compare With->", “Replace With ->".

User Manual of Process Modeling Tool
Version 1.2

Page 25

I-_[\'_'| Resource Set

W @ platform:/rescurce/ProcessModeler/git/prmt-prototype/bundles/devalidas.spm.pmt.examples/Docun

L e

MNew Child

Undo Set

Redo

Cut

Copy
Paste

Delete

Validate

Contral...

Show DOT (Graphviz)

Export DOT Image (Graphviz)
Export VVT Model

Evaluate Variants

Project Owerview

Update Project Status

Project Status Details

Infer and Set Types

Check Types

Show Parameter Statistic

Export Pararneter Values To Excel
Import Parameter Values From Excel
Create Sub-Criteria from Checks
Check Instantiation Cormplete
Check Planning Complete
Check Process Complete

Team

Replace With

Word Generators

Compare With
Load Resaurce...

Refresh

Show Properties View

Ctrl+Z
Ctrl+Y

> #¥

& 5B B

%

Q- e mm @ =S

)
EEE
W

Teol

Requirement
Required Document
Artifact

Model

Method

Process Module
Verification Meodule
Stake Holder
Project Pararmeter
Process Parameter
Planning Pararneter
Process Variable
Binding

Type

Enurn Type

List Type

Figure 26 shows the tree browser and the popup menu of the right mouse
button click. It allows to add new elements to the model using the
function “New Child”. The children that can be added depend on the

User Manual of Process Modeling Tool

Version 1.2

Figure 26: Tree Browser

Page 26

selected model element and on the activated extensions. The available
elements and their structure are explained in Section 9.

Furthermore, also other actions can be started using the popup menu, for
example the report generation, export, import etc. Some actions support
multiple selection.

The following popup actions can be activated by right-clicking on the
elements in the browser. Note that some actions are gray. They can only
be activated if the corresponding model extensions are activated.

7.2.1 On Various Elements

The following actions are applicable on several elements and have

comparable behavior:

¢ New Child: Create a new child element. See Section 9 for the meta
model that describes the possible elements.

¢ New Sibling: Create a new sibling element. See Section 9 for the
meta model that describes the possible elements.

e Cut: Cut the selected element from the browser into the copy buffer.

e Copy: Copy the selected element into the copy buffer.

e Paste: Paste the element from the copy buffer into the selected
element.

e Delete: Delete the selected element(s).

e Validate: The validate action is described in Section 8.5.1.

Furthermore there are some PMT specific actions available on several

elements:

7.2.1.1 Show DOT (Graphviz)

This action is available on the following elements:

e ProcessModule

e Artifact

e Stakeholder

e Requirement

e Compliance

It shows the source code that is used to compute the Process and the
compliance view, depending on the selected element as shown in Figure
27. It can be used for example in http://www.webgraphviz.com/ to
modify or debug the graphs.

User Manual of Process Modeling Tool
Version 1.2

Page 27

http://www.webgraphviz.com/

Generated Create Test Specification graphical (dot) representation

rankdir=TB
subgraph cluster_Frame {
label="Create Test Specification” fontname=Arial fontsize=14 fontsize=25 shape=box style="rounded filled" color=blue penwidth=4 fillcolor=lightblue
Start [shape=circle style=filled fontname=Arial fontsize=14 color=green margin=0]
End [shape=circle style=filled fontname=Arial fontsize=14 color=orangered margin=0]
subgraph cluster? {
"Specify Tool Features” [label="5pecify Tool Features” fontname=Arial fontsize=14 height=0 shape=box style="rounded filled" color=blue fillcolor=lightblue]
"Create Test Environment” [label="Create Test Environment" fontname=Arial fontsize=14 height=0 shape=box style="rounded,filled" color=blue fillcoler=lightblue]
label="Tester" fontname=Arial fontsize=14 shape=box style=solid color=black penwidth=1
1
1
Start -> "Specify Tool Features"
Start -> "Create Test Environment”
"Specify Tool Features"-> End
"Create Test Envirenment"-> End

1

Figure 27: DOT Representation of the Graphical View

7.2.1.2 Export DOT (Graphviz)

Similar to the above “"Show DOT (Graphviz)” actions in previous section,
except that it saves the text into a file.

7.2.1.3 Infer and Set Types

Parameters, Variables and Terms have types that should be specified to
ensure correct validation and evaluation of the terms. This can be done
automatically using the PMT action “Infer and Set Types”, which is
available on all "Named” elements and all “Terms” and “Bindings”. Once
started (see Figure 28), it will create a textual report on which inferences
it did as shown in Figure 29.

User Manual of Process Modeling Tool
Version 1.2

Page 28

~ % Process Validas Module Test Process

Requirement

Process Moc

@ Artifacts

 Stake Holder

og Bindings

[E Parameters
Types

MNew Child ¥

Undo Ctrl+Z
Redo Ctrl+Y

Cut

[E Copy

Paste
Delete

Validate

Control...

Show DOT (Graphviz)

Export DOT Image (Graphviz)
Export VVT Model

Evaluate Variants

Project Overview

Update Project Status
Project Status Details

Infer and Set Types

Figure 28: Start “Infer and Set Types”

Inferred Types in 1 elements

inferring Term (150_ASIL == ASIL_A)
inferring Term (150_ASIL == ASIL_E)
inferring Terrm ASIL_B

inferring Term (150_ASIL == ASIL_E)

inferring Term [S0_ASIL
inferring Term |50_ASIL
inferring Term [50_ASIL
inferring Term [S0_ASIL
inferring Term |50_ASIL

inferring Term (150_ASIL == ASIL_A)

checked 30 remaining 0

inferred types in 1 selected elernents with 30 elements. Uncheckable (Remaining): 0

Copy Tes

7.2.1.4 Check Types

The “Check Types” action can be started on all elements and checks the
types in the selected element(s) and in all contained elements.

Figure 29: Result of “Infer and Set Types”

User Manual of Process Modeling Tool

Version 1.2

Page 29

Checked Types in 1 elernents

iChecking types in 1 elerments!

checking types in Management(Process)

successfully checked type of Parameter FEATURE:String

successfully checked type of Parameter LIST_OF_FEATURES:[String]
successfully checked type of Binding for LIST_OF_FEATURES=[f1, f2, 3]

Figure 30: Result of type checking

7.2.2 On Process Element

On Process elements the following popup-actions are available (see Figure
31):

The following actions are Project specific:

e Check Project Status: computes the project status, see Section 8.2.11.

e Export Parameter Values To Excel: Exports the parameter values to
excel, allowing them to be changed in Excel

e Import Parameter Values from Excel: imports parameter values from
Excel and creates (or updates) binding for the parameters.

User Manual of Process Modeling Tool Page 30
Version 1.2

%8 Process Managen

£ Requirement T New Child §) Tool
~ &2 Process Modul Undo Cirle7 B Requirement
Process Mo Redo Chrl+ ¥ @ Required Document
v &% Process Mo € Artifact
w [Er;m?t Cut 9 Model
rojes Copy i
&2 Process Mo & Methed
T Paste v
L, Verification &% Process Module
€ Artifacts Delete i, Verification Module
i Stake Holde Validate i Stake Holder
w og Bindings _
w &g Binding Control... R
w i List T [Process Parameter
Show DOT (Graphviz)
® Cc ? s B Planning Parameter
Export DOT | (Graphwviz)
® Cc *po! mage Lhraphvi E Process Variable
& Cc Export VWT Model o
=g Binding
v [Parameters Evaluate Variants T
B Project F Proi . T Type
roject Overview
v Types i @ Enum Type
T Type Shing Update Project Status > List Type
<4 List Type Lic Project Status Details
Infer and Set Types
Check Types
Show Parameter Statistic
Export Parameter Values To Excel
Import Parameter Values From Excel
Check Instantiation Complete
Check Planning Complete
Check Process Complete
Word Generators *
Load Resource...
Refresh
Show Properties View

Figure 31: Popup Menu on Project

7.2.3 On ProcessModule Element

On ProcessModule elements the following popup-actions are available (see
Figure 31):

The following actions are Project specific:

e Check Project Status: computes the project status, see Section 8.2.11.

e Reset Project Specific Data: Resets project specific data
(ProjectRelevant, ProjectComment, Effort, NumberOfInstances,

PlannedStartDate, PlannedEndDate, EndDate) to default values.
User Manual of Process Modeling Tool
Version 1.2

Page 31

e Export Development Interface (Excel), see Section 8.6.3.4

e Export Offer (Excel + Word), see Section 8.6.3.5

e Export Parameter Values To Excel: Exports the parameter values to
excel, allowing them to be changed in Excel

e Import Parameter Values from Excel: imports parameter values from
Excel and creates (or updates) binding for the parameters.

Process Module CQua
w Process Module SW
Process Module S
Process Module S
4, Verification Medu
4, Verification Modu
Process Module S
4, Verification Medu
4 Compliance Part |
‘g} Artifacts
i Stake Holders
@ Method Validas Qual
*ﬂ Tools
‘g} Artifacts
i Stake Holders
&g Bindings
E Parameters
T Types
B History

Add History Record

Show DOT (Graphwviz)

Export DOT Image (Graphviz)
Export VWWT Model

Evaluate Variants

Project Overview

Update Project Status

Project Status Details

Infer and 5et Types

Check Types

Show Parameter Statistic

Export Parameter Values To Excel
Import Parameter YValues From Excel
Import Project Status (Excel)
Export ProcessModule {.pmt)
Reset Project Specific Data
Export Offer (Excel + Word)
Export Development Interface (Excel)
Export Project Status (Excel)
Export Process Parameters (Excel]
Instantiate Process Module

Word Generators >

Figure 32: Popup Menu on ProcessModule

7.2.4 On Model Element

On Model elements the following popup-actions are available (see Figure

123):

The following action is Model specific:
e Import Ecore Model: This allows to import ecore models to support
modeling of model-based processes, see Section 8.2.2.

User Manual of Process Modeling Tool

Version 1.2

Page 32

Property View:

The property view shows the properties of the element that is selected in
the tree browser. There are two forms of property views in PMT
1) The classical EMF view, which shows one line for each property (see

Figure 34)

2) An EMF Forms based with groups of properties that can be collapsed

(see Figure 35)

Using the small icon on the right top, the views can be switched (see

Figure 33).

% Process Modeling Tool

= O | | Properties 2 | = Outline

BASIC
wototypelt

Switch property view (emnfforms=-> classic) h

Mame Management |

Figure 33: Switch Property Views

] Properties &2 | o= Qutline

Property
Mame
Descripticn
D
Comment
Long Description
Deactivated
Maxirnal Safety Level
Preferences
Filter Scope

1
i
b

[

Walue

‘= Management
'= Mini Bxarnple for CKit Planning

i falze
= ASIL_D

Figure 34: Classical EMF Property View (of Process)®

= 0O

5 Note: Issue#39 states a problem with EMFForm of Process, that is not collapsing as

expected

User Manual of Process Modeling Tool

Version 1.2

Page 33

[T Properties &2 | 5= Outline = e v = 8

| BASIC ¥

EXTENDED ¥

LAYOUT ¥

TAILORING ¥

COMPLIANCE ¥

MANAGEMENT 3

Planned Start Date | Planned End Date | End Date |

Status | DEFINED v | Progress | 0]

Number Of Instances | 0 | Effort | 0 |

Instance Of Process Module lot Set & || &g —

Instantiated In Process Modules

MODELING ¥

Figure 35: EMF Forms Property View of Process Module

The EMF Forms of all elements have the similar property categories that

are represented by “collapsible groups”, see Figure 35.

e BASIC: this category contains the most frequently used basic
properties like name description of the element.

e EXTENDED: less frequently used properties that do not fall under a
specific other category

e LAYOUT: properties to impact and customize the generated layout of
the process and compliance view

e TAILORING: All properties required for automated tailoring:
Parameters, Bindings, but also types and their declarations

e COMPLIANCE: properties for the compliance with safety standards or
requirements

e MANAGEMENT: properties to manage the process, e.g. efforts, dates,
states, ...

e MODELING: properties for model-based processes, e.g. meta-models
and process conditions.

7.2.5 On Requirement Element

”

In order to change the “"Recommended From” and “Recommended To
properties of many requirements at once, on the Requirement the
following actions are available: “Set Recommended From” and "“Set
Recommended To”. Both can be started using the right mouse popup
menu as shown in Figure 36. Note that they work recursively for all
contained requirements and it is manually required to save the model
afterwards.

User Manual of Process Modeling Tool
Version 1.2

Page 34

The resulting changes are listed in the result dialog as shown in Figure 38

Set Recommended To

Set Recommended From

Figure 36: Starting Set Recommended Actions

%" Set 'Recommended To' to 284 Requirements it

Please enter a new Safety Level for all requirements, e.g. ASIL_D or SIL_4

| siL_41]

Level must be valid:Mo enum constant metaModel.suptertype. Safetylevel 5IL_41

QK Cancel

Figure 37: Enter New Safety Level Dialog

Updated 0 Requirements (please save the model]

dkeeping 'Recommended To' from 5IL_4 in IEC-1-6.2.7-a Frequency of the functional safety audits! A
keeping 'Recommended To' from SIL_4 in [EC-3-7.4.4.7-g Discrepancies between expected and actual result

keeping 'Recommended To' from SIL_4 in IEC-3-7.3.2.2-g Validation environment

keeping 'Recommended To' from SIL_4 in IEC-3-7.4.2.13 Pre-Existing Software W&V by Testing and Review
keeping 'Recommended To' from SIL_4 in IEC-1-7.4.2.2 Hazard eliminaticn/reduction considerations
keeping 'Recommended To' from SIL_4 in [EC-Part 1 General Requiremnents

keeping 'Recommended To' from SIL_4 in IEC-1-7.5.2.6 Conditions for non-safety related EUCs

keeping 'Recommended To' from SIL_4 in IEC-3-7.3.2.2-h The pass/fail criteria

keeping 'Recommended To' from SIL_4 in IEC-1-2.2.13-f null

keeping 'Recommended To' from SIL_4 in IEC-3-7.4.4.10-d Detection of design and prograrmming mistakes
keeping 'Recommended To' from SIL_4 in IEC-1-8.2.16 Determining the level of independence

keeping 'Recommended To' from SIL_4 in [EC-1-6.2.14-d Safety integrity levels b
£ >

Copy Tox

Figure 38: Result of Set Recommended Actions

Also available on Requirements: Generate Compliance Structure
Action, see Figure 39 that generates a compliance template tree for the
selected Requirement including the references to the requirement and
containing an argumentation pattern that should be extended for the
atomic requirements.

User Manual of Process Modeling Tool
Version 1.2

Page 35

w %® Process Validas Qualification Processes

-

Requirement 150 26262:2011 Deactivated
HEqL“rEmE [Fln Ws s ot | '||'.|.-||'|.
Requireme New Child *
Requireme Mew Sibling »
RequremE Undo Ctrl+Z
EquUirerne
Requireme Redo Ctrl+Y
Process M oF Cut
Process Mi -
Process M I Copy
Process M Paste
% Method Generate Compliance Structure
*ﬂ Tools
o4 Bindings Set Recommended To
G Paramet Set Recommended From

Figure 39: Generate Compliance Templates Action

% Generate 39 Compliances >

Generate Compliance Proposal for 39 requirements (8 hierarchic)?

Yes

Figure 40: Confirmation of Compliance Structure Generation

After confirming the generation question (see Figure 40) the result (see
Figure 41) s generated. This can be moved into the process modules for
refinement.

v 4 Compliance 8-11.4 Compliance Requirements and recommendations
Compliance 8-11.4.1 Compliance General Requirement
Compliance 8-11.4.2 Compliance Validity of pre-determined Tool Confidence Level or qualification
4 Compliance 8-11.4.3 Compliance Software tool compliance with its evaluation criteria or its qualification
¥ Compliance 8-11.4.4 Compliance Planning of usage of a software tool
¥ Compliance 8-11.4.5 Compliance Evaluation of a software tool by analysis
4 Compliance 8-11.4.6 Compliance Qualification of a software tool
4 Compliance 8-11.4.7 Compliance Increased confidence from use
¥ Compliance 8-11.4.8 Compliance Evaluation of the tool development process
¥ Compliance 8-11.4.8 Compliance Validation of the software tool

[T Properties 2 | 5= Outline) k= v= 0

BASIC e 2
3 | 2-11.4 Compliance Requirements and recommendations Applicable \
escription | The requirement Requirements and recommendations [8-114] is satisfied since all sub-requirements are satisfied. (nly i all are applicable and not tailored sway using the Paramerter: QUALIFICATION_M|_,
X@B

Sub Compliances ‘

il I —
-
Reuu\rementE-11.4:P_D1EReuu\rementsandre:cmw & | ep | S
@ e — |

Process Modules ‘

Verification Modules ‘

Figure 41: Generation Result Example

User Manual of Process Modeling Tool
Version 1.2

Page 36

7.2.6 On Parameter, Binding, EnumValue and EnumType Elements

Since tailoring terms are not bi-directional linked, it is not clear, where
they are used. For Example consider you have an EnumType TestResult =
PASS / FAIL / ERROR and you want to determine in which elements
(tailoring terms) it is used.

This finding of all references to a given Parameter, Binding, EnumValue or
EnumType can be done with the so called “"Show References” Action which
is available on the references elements only.

The result of the action lists all occurrences of this element in the
complete model (independent from tailoring). The action can be started
using the right mouse popup menu as shown in Figure 42.

v @ Enum Type QKIT_TY Export VWT Model

(a2 Enum Value QKIT, Evaluate Variants

izl Enum Value QKIT, Project Overview
Update Project Status

Project Status Details

Infer and Set Types

Check Types

Show Parameter Statistic

Export Parameter Values To Excel
Import Parameter Values From Excel

Show References

Figure 42: Starting the Show References Action

The result is displayed in a list text dialog as shown in Figure 43

User Manual of Process Modeling Tool
Version 1.2

Page 37

References of 2 elements

References for EnumValue QKIT_TYPE_TCA in Validas Qualification Processes: |

1. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / Software tool compliance with it
2. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / General Requirernent / 8-11.4.1 ¢
3.150 26262:2018 / Supporting Processes / Confidence in the use of software tools / TQR / TOR Compliance:(QKIT == QKIT_TYPE_TCA)

4,150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / Software tocl compliance with it
5,150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / Validity of pre-determined Tool (
6. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / TCER / TCER Compliance:(QKIT == QKIT_TYPE_TCA)

7,150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / Evaluation of a software tool by
References for EnumValue QKIT_TYPE_MAMNUAL in Validas Qualification Processes:

2. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / TOR / TOR Compliance PCE(QKIT == QKIT_TYPE_MANUAL)

3. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / General Requiremnent / 8-11.4.1 ¢
4. 150 26262:2018 / Supporting Processes / Confidence in the use of software tools / Requirements and recommendations / Validity of pre-determined Tool ¢
5.150 26262:2018 / Supporting Processes / Confidence in the use of software tools / TCER / TCER Compliance PCe(CKIT == QKIT_TYPE_MAMNUAL)

< >

Figure 43: Result of Show References Action

7.3 Process Module View

The process module view shows the graphical representation of the
process using the graphical notation defined in Section 5, depending on
the current selection. It is working for “ProcessModules”, “Artifacts” and
“StakeHolders” and shows their process view.

Important to note is that it requires graphviz (dot.exe) to be in the path
otherwise it will not work (see Section 6 for installation). Furthermore
process modules require to have a stakeholder assigned in order that
they can be graphically visualized, otherwise the graphic will just be
ignored.

PMT generates the images using graphviz and stores them temporarily in
files (.gv and .png) into a temporary file directory pointed by the variable
“java.io.tmpdir”/PMT, SO for example:
C:\Users\oscar\AppData\Local\Temp\PMT. Here you can find also the
images for further usage. However the preferred way to access the
sources for graphviz is definitely the "Show DOT (Graphviz)” action that is
available on the elements having a graphical view, see Sections 7.2.1.1
and 7.2.1.2.

User Manual of Process Modeling Tool Page 38
Version 1.2

7.4 Compliance View

The compliance view shows the compliance argumentation using the Goal
Structured Notation (GSN), see https://www.goalstructuringnotation.info/

for more information.

It does not show the complete tree of arguments, since most
requirements are hierarchically and this would lead to too complex
images. It just shows one hierarchy level. The generated compliance
report contains all compliance views and is therefore complete.

Like in the process module view the graphs are generated in the
temporary directory and can be exported using SHOW and export actions,
see Sections 7.2.1.1 and 7.2.1.2.

7.5 Projection View

The projection view shows the result of model projection. Model projection
is an information on the model or on selected parts of it. Model projection
shows all projected values grouped by attributes and classes, such that it
can be used as statistical information (e.g. the number of modeled
processes) or to find a specific element by name.

User Manual of Process Modeling Tool
Version 1.2

Page 39

https://www.goalstructuringnotation.info/

- Process Module View | -, Compliance View | 5., Projection 22 | [Diagnostic

Projected elermnent:

Projection:

Is Process

=

< 000o0o0oDOoDDODDODODOTGDOTG R D

The Model Projection,

W G Projection of Process : Validas Module Test Process (1001)
f# 3 Packages of Process : Validas Module Test Process (1001
w {3 22 Claszes of Process : Validas Module Test Process (1001
w H Artifact (7]
~ f# 14 Properties of Artifact (7

Containment Subfrtifacts to Artifact (3)
Layout (7
LayoutPricrity (7]
PartOfProduct [7
Projectinput (7]
Reference StakeHolder to StakeHolder (3]
Reference createdByProcessModules to ProcessModule (8]
Reference createdByProcessModules to VerificationMeodule (2]
Reference readByProcessModules to ProcessModule (8]
Reference readByProcessModules to VerificationMoedule (2)
Status (7]
deactivated (7)
description (&)
name (&)
3 6 Values of name of Artifact (6)

i Code Coverage Report (1)
~ @ SUT (1)

Artifact: SUT

) Safety Case (1]

) Specification (1)

i Test Case (1)

i Test Report (1)

Figure 44: Model Projection View

see Figure 44 view has a root ('5) for the selected

element(s) that is/are projected. The root contains the type and the name
of the projected element and the number of contained elements in
brackets. Below there are the different projection groups () listed:

e The package group: shows the projection split by packages

e The classes group: shows the projection split by the classes. In the
classes group, every class is listed with the number of properties

e The properties group (if configured in the PMT model projection
preferences). It contains all properties, independently from the classes,

e.g. if an Element

with a given property Name X is searched, it will be

found there, independently if it is a Process, Artifact, Tool or any other
element with this property.

User Manual of Process Modeling Tool

Version 1.2

Page 40

Under every class (E), the properties (=) are listed. There are two kinds
of properties: attribute and relation properties. Attributes are listed by
their names, e.g. "Comment”, “"Deactivated”, Relations are listed by
their type, e.g. "“Containment Process to Tool” or “Reference to
Stakeholder”. Both have their quantities in brackets. Empty or “null”
values/references are not counted. Unlike Attribute properties, relation
Properties do not have values listed, but model projections (G) of the
related elements, see Figure 45

W G Projection of Process : Validas Module Test Process {1001)
3 3 Packages of Process : Validas Module Test Process { 1001)
w [22 Claszes of Process : Validas Module Test Process (1001
~ H Artifact (7)
~ & 14 Properties of Artifact (7]
w O Containment Subbrtifacts to Artifact (3)
W G Projection of Artifacts (3]

B3 1 Packages of 3 elements (3)

3 1 Classes of 3 elements (3]

H# 8 Properties of 3 elements (3]
Layout (7]
LayoutPriority (7]
PartOfProduct (7
Projectinput (7]
Reference StakeHolder to StakeHolder (3)
Reference createdByProcessModules te ProcessModule (8]
Reference createdByProcessModules to VerificationModule (2]
Reference readByProcessModules to ProcessModule (8]
Reference readByProcessModules to VerificationModule (2]
Status (7)
deactivated (7]
description (&)

0 oooooDOoDoDODOO OT LDDE D

name (&)

Figure 45: Model Projection of Relations

For every property, the values (' #) are listed that have been found during
projection, e.g. “true (13)” in Figure 47. Below that, the values pointers
() to the occurrences are listed with their types and names, e.g.
“"MetaModelElement: tcm.Attribute”. The pointers can be used with a
double click to navigate in the browser to the elements with that value.

On the right upper corner there is an icon that can be used to freeze the
current model projection. Otherwise model projection will always be
recomputed based on the current selection in the browser.

User Manual of Process Modeling Tool Page 41
Version 1.2

%" Preferences O >

type filter text

EMF Compare
Process Madeling Teool
w Projection

General ~ v v

General Settings of Model Projection
Display global attribute properties

General []5ert attributes by number of cccurences (instead of name)

Restore Defaults Apply
Apply and Close Cancel

Figure 46: Model Projection General Preferences

Model projection can be configured in the preference pages, see Figure 46.
~ f} 24 Properties of Process : Validas Module Test Process (1001
o Cardinality (422
o Containment (422)
= Effort (11)
= ID{11)
Implicit (2]
w O |sAbstract (52)
w 3 2 Values of lsAbstract (52)
i falze (39)
~ {8 true (13)

0

MetaModelElement
MetaModelElement :
MetaModelElement :
MetabodelElernent :
MetaModelElement
MetaModelElement :
MetaModelElement :
MetabodelElernent :
MetaModelElement
MetaModelElement :
MetaModelElement :
MetabodelElernent :
MetaModelElement

o IsRoot (52

temuAttribute
tem.CheckOccurrence
term.Costs
tem.ErrerOccurrence
temulAssurnable
tcrn.|Bug
term.Deactivatable
tem.Derivable
temulldentifiable
tern.Impactable
tem.ToolChainElement
tem.Virtualizable
termn.RestrictionOccurrence

Figure 47: Global Attribute Property Projection Group

It supports the following two settings:

e Display global attribute properties: If this is selected, there will be a
global attribute properties projection group in the root of the
projection, see Figure 47. It contains all attribute properties of all

classes.
User Manual of Process Modeling Tool
Version 1.2

Page 42

e Sort attributes by number of occurrences: If this is selected, the
sorting in the model projection view is changed accordingly. Default
sorting is alphabetically, but it can be changed to list the most

frequently found elements first (in a descending order).

7.6 Diagnostic View

The diagnostic view (see Figure 48) shows the results of the
performed model validation. It can be used to navigate to the elements

that violates a rule.

Note it is not automatically updated, except when running validation.

-, Compliance View | -, Projection |[£] Diagnestic &2 |51, Process Module View

48 errors, 0 warnings, 0 others

Model Elernent Rule : Description

~ @ Other (48 items)
Artifact Artifacts are used @ Artifact Specification: No creating/reading process modules found (an...
Artifact Artifacts are used @ Artifact Test Envirenment: No creating/reading process modules foun..,
Artifact Artifacts are used @ Artifact Test Implementation: No creating/reading process modules fo...
Artifact Artifacts are used © Artifact Test Specification: No creating/reading process modules foun...
Artifact Artifacts have Creator defined @ Artifact Specification: no active Creator and not project input.
Artifact Artifacts have Creator defined @ Artifact Test Environment: no active Creator and not project input.
Artifact Artifacts have Creator defined @ Artifact Test Implementation: no active Creator and not project input.
Artifact Artifacts have Creator defined @ Artifact Test Specification: no active Creator and not project input.
Artifact Artifacts have Readers/Verifiers defined @ Artifact Intro: no active Readers/Verifiers and not part of product
Artifact Artifacts have Readers/Verifiers defined @ Artifact Specification: no active Readers/Verifiers and not part of prod...
Artifact Artifacts have Readers/Verifiers defined @ Artifact Test Environment: no active Readers/Verifiers and not part of p...
Artifact Artifacts have Readers/Verifiers defined @ Artifact Test Implementation: no active Readers/Verifiers and not part ...
Artifact Artifacts have Readers/Verifiers defined @ Artifact Test Specification: no active Readers/Verifiers and not part of p...

Qualified Name

Artifact Specification
Artifact Test Environment
Artifact Test Implementation
Artifact Test Specification
Artifact Specification
Artifact Test Environment
Artifact Test Implementation
Avtifact Test Specification
Artifact Intro

Artifact Specification
Avtifact Test Environment
Artifact Test Implementation
Artifact Test Specification

Figure 48: Diagnostic View of Last Validation Results

User Manual of Process Modeling Tool
Version 1.2

Resource

Management.pmt
Management.pmt
Management.pmt
Management.pmt
Management.pmt
Management.pmt
Management.pmt
Management.pmt
Hierarchy.pmt

Management.pmt
Management.pmt
Management.pmt
Management.pmt

last

Page 43

8 Features of PMT

PMT has the following features that are described in this section:
e Terms and Types

e Process Modeling

e Validation

e Interfaces

e Report Generators

e Preferences

e Scoping

8.1 Terms and Types

PMT is based on a mathematical model of terms allowing to automatically
check consistency and to automatically evaluate terms, for example to
tailor variant terms and conditions in the process model. The model is
inspired by the second order lambda-calculus consisting of terms and
types, being constructed by constant, functions and variables.

Hipee @ | % porameter [|
N 00

T e l

[0..1] Parameter

(2]
[] Herm &

[0..%] Terms “V [0..%] Terms
2 7] il Il
)

fuin| o

[0..%] Parameters

[
[

[0..*] Enum\alues

H Enumvalue It g EnumvalueRef |E|| | H constant IE‘| | B ustTerm IE‘| | B B‘3‘3|'|'E"""E|| | B paramref IE‘|
[0..1] EnumValue | | = value : Estring | [| | | l _J
7 7 7 T 7
| | = = | = = | = |
[H InList E‘] [H earemd

[QNOTI’ermE‘][QORTermE‘] [QANDTemE‘]
[I] I

[L

Figure 49: Terms in PMT

While Figure 49 looks quite complex, terms are very simple. They can
consist only of the following elements

e Constants

e Boolean and list terms

e References to modeled elements

Boolean terms can be created in the allowed places (Variantable
elements) in the tree browser by inserting new elements using the “New
Child” action (or by copy & pasting existing terms). Note that the terms

User Manual of Process Modeling Tool
Version 1.2

Page 44

have to be created according to their logical structure, starting with the
root node. For example if a disjunction term shall be created it has to be
done as shown in Figure 50. The arguments for all terms are specified in
the meta-model section 9.5.

~ &2 Process Module Cla .-~ = =)
&8 Mew Child & AND Term

N/ OR Term ({15026
v eg Bindings New Sibling » % ORTerm
v I?md.mg HST <) Undo Paste from Clipboard Ctrl+Z EQ Term
w 43k List Term [I
= E Redo Chrl+ ¥ MOT Term
oz Enum ¥ .
w [F Parameters o Cut In List

Figure 50: Creating new Terms

We demonstrate terms using an example term / condition:
IS026262 < LIST_OF_STDS || IEC61508 < LIST_OF_STDS

This term is modeled as depicted in Figure 51: The tree-browser shows
the tree structure of the term: It consists of an OR-Term with two similar
sub-terms, constructed by an “In List” (e) Boolean operator and two
arguments: first a reference to a value of an enumeration and a reference
to a process parameter “"LIST_OF_STDS”.

~ %/ OR Term ({I5026262 in LIST_OF_STDS) || (IECE1508 in LIST_OF_STDS))
w £ In List(15026262 in LIST_OF_STDS)
(i Enum Value Ref 15026262
B Param Ref LIST_OF_STDS
» £ In List(IECE1508 in LIST_OF_5TDS)
(i Enum Value Ref IECE1508
[Param Ref LIST_OF_STDS

Figure 51: Example Term

This example shows that the term

IS026262 < LIST_OF_STDS || IEC61508 < LIST_OF_STDS
is a boolean term, consisting of two sub-terms and that 1S026262 and
IEC61508 are enumerated values that are referred within this term as
well as the list of standards, which is a reference to process variable.

In order to evaluate the term the value of the process variable
LIST_OF_STDS has to be defined. This can be done by a so called
"Binding”, that assigns ("binds”) a concrete value to the variable.

User Manual of Process Modeling Tool
Version 1.2

Page 45

Bindings can be contained in Processes (global) and ProcessModules
(local). They have a reference to a parameter (to which the values are
assigned) and they contain the value, see Figure 52.

| H Binding & % Parameter [Z1

[0,.*] Binding [0..1] Parameter

[0..%] lteratorParameters

[0..1] Value
| H Term E‘]
l J [0..1] ValueFromListParameter

Figure 52: Binding Model

The bindings are displayed in PMT tree browser, especially the contained
values, see Figure 53. Note that in the above example the value for the
parameter “"LIST_OF_STDS” is a list value (constructed by the “ListTerm”
Term) with one value (reference to an EnumValue, as explained above).

w &g Bindings
v g Binding LIST_OF STDS := [I5026262] [Properties 53 | B Outline
~ 48> List Term [I5026262]
(i Enum Value Ref 15026262 TAILORING

Parameter B Process Parameter LIST OF STDS:[Standards]

Figure 53: Binding Representation in Tree Browser and Property View

The overall example of terms (including definition and binding) looks as
shown in Figure 55 in the tree browser (It is also contained in the
Example/Documentation/Terms.pmt file).
In addition to the Variant-Term and the Binding it also contains the
definition of the used types:

1) The EnumType Standards (with all EnumValues as children)

2) The ListType "“ListOfStandardTypes”, which contains a reference to

the “BaseType” of the list ("Standards”), see Figure 54.

1 Properties &2 | o= Qutline] fer == O
BASIC £
Mame | ListOfStandards |
Description | type for list of standrads |
Base Type @ Enum Type Standards || eh| e

Figure 54: Property View of ListType

User Manual of Process Modeling Tool
Version 1.2

Page 46

w & platform:/resource/ProcessModeler/git/pmt-prototype/bundles/devalidas.spm.pmt.examples/Documentation/ Terms.pmt

v %9 Process Term Example

w Process Module Classification Demo
w %' OR Term ((15026262 in LIST_OF_STDS) || (IEC61508 in LIST_OF_STDS))
v £ In List(13026262 in LIST_OF_STDS)
iig Enum Value Ref 15026262
& Param Ref LIST_OF_STDS
~» € In List(IEC61308 in LIST_OF_STDS)
iiz Enum Value Ref IECE1508
G Param Ref LIST_OF_STDS
w og Bindings
w &g Binding LIST_OF_5TD%:= [15026262]
w <8 List Term [15026262]
(ig Enum Value Ref 15026262
w [Parameters
E Process Parameter LIST_OF_STDS:[Standards]
@ Method
W Types
v 3 Enum Type Standards
(i Enum Value 15026262
(i Enurm Value IEC61308
iiz Enum Value EN50128
iz Enum Value ENB0GST
<i» List Type ListOfStandards
T TypeBoolean
T TypeInteger
T TypeDouble
T Type String

Figure 55: Complete Term Example

The types in PMT consist of three different types (see Figure 56):

Base Types (like Boolean, Integer, Double)

Enumeration Types: with defined constant values (see “Standards” in

above example)

List Types: describe the type of lists over base types (see

“ListOfStandards” in above example).

H process [0.5 Trpes
- i [#]
B ee [0..1] BaseType
H erocessModule [l g [0.."] Types
[a] T ral
= i
[H EnumType @] H Listhpe [

l J

[]

0..*] Enumvyalues

[H Enumvalue El]

Figure 56: Model of Types

User Manual of Process Modeling Tool
Version 1.2

Page 47

Figure 56 also shows the place in which types can be defined:

e Process: contains global types

e ProcessModule: contains local types

Note: if PMT infers types it also creates the default global types: “String”,
“Boolean”, “Integer” and “Double" (see Figure 56). The corresponding
List-types are not automatically generated and have to be created
manually from the user in case they are needed.

Evaluating terms means computing their values. This is only possible for
terms that have no "“unbound” variables, e.g. parameters without
bindings. PMT evaluates terms according to the following rules:

e Constants are evaluated to themselves, i.e. constants are already
values.

e Parameters are evaluated to the evaluation of the bound terms. PMT
searches for bindings local first and then going upwards until the global
Bindings are considered.

e If parameters have no bound values they cannot be evaluated, this
might occur for example in a parameterized process that has not been
tailored by binding the variables.

e List-Terms are evaluated by evaluating all elements in the list and
creating a new ListTerm with the evaluated arguments.

e InList terms are evaluated by evaluation of both arguments and then
creating a result Constant with value True if the term is in the list,
otherwise False.

e Boolean Terms are evaluated by lazy evaluation (but do not catch
exceptions due to un-evaluatable arguments)

o EQTerm(x,y) evaluates to TRUE, if x and y evaluate to identical
terms.

o NOTTerm(x) evaluates to TRUE, if x evaluates to FALSE and vice
versa.

o ORTerm(x,y) evaluates to TRUE, if one argument evaluates to
TRUE (Evaluation order is left to right), otherwise to FALSE.

o ANDTerm(x,y) evaluates to FALSE, if one argument does not
evaluate to TRUE (Evaluation order is left to right), otherwise to
TRUE.

Evaluation of terms can be triggered using the Evaluate Variants Action on

Variantable elements, resulting into a dialog showing the evaluation

results as shown in Figure 57.

User Manual of Process Modeling Tool
Version 1.2

Page 48

Checked Variants in 1 elements

{Fvaluating Variants in 1 elements:

evaluating variants in Classification Deme(ProcessModule)
ProcessModule Classification Demo: (15026262 in LIST_OF_STDS) || (IECE1508 in LIST_OF_STDS)) = true

Copy Text Cancel

Figure 57: Variant Term Evaluation Result (Evaluate Variants Action)

8.2 Process Modeling

The process model consists of several aspects:
e Processes

¢ Requirements

e Model-Based Processes

e Compliance

e Reuse & Linking

e Tailoring

e Tools

e Project Management

8.2.1 Processes

Processes are modeled using the following elements

e ProcessModules: Describe activities / tasks, typically producing outputs
from inputs. ProcessModules should be named starting with verbs, e.g.
“Run Tests”. Verification Modules are a special form of ProcessModules
that perform verification activities to verify artifacts.

e Artifacts: Represent the data in the processes that are used as input /
outputs from the ProcessModules

e StakeHolder: Are responsible for artifacts and process modules

There are two modes to describe a process

e Artifact-based

e Artifact-free

In the artifact-based modeling style every process module has to specify

the used artifacts (input & output). The artifacts then define a sequence of

the processes, see Figure 58.

In the artifact-free modeling techniques the user has to specify the

sequence of processes, see Figure 59. Artifact-free modeling can only be

done if the artifacts are implicitly known. For Safety Related Processes we

recommend and use Artifact-based modeling, also because those

User Manual of Process Modeling Tool
Version 1.2

Page 49

processes can be managed better, see the status of artifacts in Section

8.2.11.
Note that Stakeholders are always required in the model and without
responsible stakeholder no process view can be generated.

Model Artifact-Based Processes

Developer

Model |

Y
[Generate Code)

:
Code |
1

4
Compile Cod
[ompl:a o e)

1
| Executable |

Figure 58: Artifact-Based Modeling

Model Artifact-Free Processes

Developer

Start

4
[Generate Code J

Y
[Compile Code]

i

Figure 59: Artifact-Free Modeling

Note that ProcessModules can be nested hierarchically to keep processes

manageable and viewable.
User Manual of Process Modeling Tool Page 50
Version 1.2

An important request, required by most safety standards is the
consistency of the processes. To achieve this consistency we mainly
require that the inputs and outputs of a hierarchic process modules are
used and created by corresponding sub-processes. This means that all
artifacts that are used/produced somewhere within the process have to be
input/output of the process (except temporary artifacts). In order to avoid
numerous inputs/outputs of processes, artifacts can be grouped
hierarchically as well.

Consider the example in Figure 60: The left part shows the inner view of
the process “Main” that creates two outputs from two inputs by two sub-
processes, the right part shows the outer view of the process “"Main” with
all inputs/outputs of the inner view.

Main

Role

Al A2
(A) (A)

Y Y
[3ub1) [sm:z)
v v

B1 B2
(B) T (B) T

Figure 60: Interface Consistency: Flat Model

The same example can be consistently modeled using hierarchic artifacts.
Figure 61 (hierarchic) shows on the left side the same situation as
depicted in Figure 60 (flat), except that the process is called “Hierarchic”
and used the hierarchic artifact A (contains A1 and A2) as input and
hierarchic artifact B (contains B1 and B2) as output, which simplifies the
model on the right side significantly.

This hierarchic modeling principle has also the advantage of supporting
more abstract processes on higher level and allowing a detailed process

User Manual of Process Modeling Tool
Version 1.2

Page 51

model in lower level by remaining consistent. The example can be found in
PMT example directory in the file “InterfaceHierarchy.pmt”.

Hierarchic

Role

Hierarchic

|
Y

BER

Figure 61: Interface Consistency: Hierarchic Model

8.2.2 Model-Based Processes

Model-based processes can be modeled in the same way as normal
processes (see previous section), for example naming an artifact “Model”
or “TestModel”. However most modeling tools support different modeling
styles, by using different modeling elements in different process phases.
For example State Charts and Sequence diagrams can be both described
within UML. Therefore a detailed process description should differentiate
between the different UML models. Furthermore it should be possible to
describe the modeling process precisely, for example to specify which
modeling elements belong to state charts and sequence diagrams and
which not.

All this can be achieved by allowing the process specification to use and
refer to the Meta-Model of the used modeling tools. For example in a state
chart model state charts and transitions are required and other modeling
elements (labels, junctions,..) are optional.

PMT supports specification of models using meta-models with the
following modeling elements:

e Model: specialization of Artifact

User Manual of Process Modeling Tool
Version 1.2

Page 52

¢ MetaModel: Container for Meta-Model elements

e MetaModelElement: Elements of the meta-model, e.g. State, Transition

e MetaModelAttribute: Attributes of meta model elements, e.g. Name,
Action, Condition

¢ MetaModelAssociation: Association between meta model elements, e.g.
input-transition

g arifact

7] MetzModel (2]
[0..1] MetaMode CJESE R
% = Tool: Tool

Q Model [F]] [0.*] OptionalinModels

[0..*] OptionallnModels

[0.*] MandatoryinModels [0..*] MandatoryinModels

[0..] MandatoryinModels [0..¥] QptionalinModels

[0..] MandatoryElements [0..*] OptionalElements

Q P : T J0.*] MetsModelElement [0..] MandatoryAssociations [0..*] OpticnalAssociations
etaModelElemen =

[0..*] OpticnalAttributes 10..“] MandatoryAttributes = I1sRoot: EBoolean = false [0.1] ToE : Q MetaModelAssociation E‘|
1] ToElemen
B MetaModelattribute & = IsAbstract : Boolean = false o Containment : EBoclean = false

0..*] MetaModelAttributes 0..*] MetaModelAssociations | — Cardinality : Cardinality = CARDINALITY_0_to_1

[0..*] Paren tf|

Figure 62: Modeling of Model-Based Processes

l o Type: EString

The main specification of models are the two relations “"Mandatory” and
“Optional” from the Model to the different elements of the meta model.
Note that ensuring that the models are built according to the specification
is not task of the PMT tool, but of the modeling tools. PMT focusses on the
specification of the models.

Since creating a detailed meta model can be much work, PMT allows to
import existing meta-models from other Eclipse-based tools (“Ecore
Import”), see Section 7.2.4.

An example of a model-based artifact is specified in Figure 63. It shows a
PMT Model frame that consists of a process element with a name that can
contain all elements. In Addition the frame can contain stakeholders and
tools, but this is optional.

User Manual of Process Modeling Tool
Version 1.2

Page 53

Mandatory Elernents
H Meta Model Element metabodel.referenceProcess.Process

=)= =3
Optional Elements
H Meta Model Element metaModel.referenceProcess.StakeHolder
H Meta Model Element metaModel.referenceProcess. Tool

=% =8

Mandatory Attributes

o Meta Model Attribute metafModel. referenceProcess.Process_name

[=] & e

Optional Attributes

= Meta Model Attribute metaModel. referenceProcess, StakeHolder_name
o Meta Model Attribute metaModel.referenceProcess. Tool_name

Mandatory Associations

= ==

Opticnal Associations
= Meta Model Association metalodel.referenceProcess.Process_stakeHolders

= Meta Model Association metaModel.referenceProcess.Process_tools

Figure 63: Model Frame in PMT Models

More details can be found in the meta-model Section.9.12.

8.2.3 Requirements

Requirements are mainly hierarchically. Therefore they are modeled
hierarchically as a tree. References to other requirements
("RequiredRequirements”) are also supported. Note contained
requirements do not need to be modeled as requirements, they are
automatically required.

Important is the traceability of the requirements model to the original
requirements. This can be modeled using IDs. Figure 64 shows the
structure of the requirements in the ModuleTest example.

User Manual of Process Modeling Tool
Version 1.2

Page 54

Process Modeling Tool
Eile Edit PMT Editor Window Help
14 ModuleTest.pmt £2 = B || Properties & | 0= Outline

™ Resource Set BASIC

w W platform:/resource/ProcessModeler/git/pmt-prototype/bundles/devalidas.spm.pmt.examples/MeoduleTest/Moc

~ ¥ Process Validas Module Test Process Name I@
= .
v [Requirement IS0 |50 26262 Description Every branch of the

v EI|§| Requirement 150-6 Part 6
v E'@ Requirement 150-6.9 Software unit verification ID 150-6.9.44-3.1b
v EI|§| Requirement 150-6.9.4 Requirements and recemmendations
+ B Requirement I50-6.9.4.4 Structural Code Coverage <-> Perform Module Test
v E'|§| Requirement 150-6.9.4.4-9 Table &
EI|§| Requirement 150-6.9.4.4-9.1a Statement coverage

Claiming Process Modules

v [B Requirement 150-6.9.4.4-9.1b Branch coverage
/' OR Term ({IS0_ASIL == ASIL_B) || (IS50_ASIL == ASIL_C) || (ISO_ASIL == ASIL_D))
4 Compliance 6.9.4.4-9.1b Compliance with Branch Coverage
v [B Requirement 150-6.8.4.4-9.1c MC/DC (Medified Condition/Decision Coverage)
== EQ Term (ISO_ASIL == ASIL_D) Required Requirements
4 Compliance 6.9.4.4-9.1c Compliance with MCDC
4 Compliance 6.9.4.4 Comnpliance with Structural Coverage

Figure 64: Requirements Example

Note that there are also extended properties that allow to specify the
mandatory requirement risk levels, see Figure 65. However for automated
tailoring those are not supported. We recommend to use the more general
and powerful principle of Variant-Terms that can be automatically
evaluated, see the “"ORTerms” in Figure 64 for example that describe
Variant Terms in a formal way.

User Manual of Process Modeling Tool
Version 1.2

Page 55

[Properties &2 | B= Qutline s b ¥ 7

BASIC 4

EXTENDED

»

Deactivated |:|

Long Description

Comment
gy S S—
@mented From ASIL_A v | Recommented To ASIL_B 5
® |o
Verified By
=) |

Required By Requirements

Figure 65: Extended Requirement Properties

8.2.4 Compliance

Compliance modeling consists of two parts
1) Claiming requirements
2) Arguing compliance
Showing/Proving compliance can then be done using the VVT Export.

Claiming requirements describe the process of stating “This process

satisfies these requirements”. This is not a compliance statement, but

rather a compliance goal.

To model claimed requirements, PMT allows to use the two (equivalent)

model relations:

e In ProcessModules: Use the association
“ClaimedComplianceRequirements” (COMPLIANCE part), see Figure 66

¢ In Requirements: Use the association "“ClaimingProcessModules”
(BASIC part), see Figure 67.

Note the PMT tree browser shows the compliance using “<->" after the

names of ProcessModules and requirements, see Figure 68.

User Manual of Process Modeling Tool
Version 1.2

Page 56

- BASIC

EXTENDED

LAYOUT

TAILORING

COMPLIANCE

Claimed Coempliance Requirements

Requirement |50-6.9.4.4 Structural Code Coverage <-> Perform Module Test

Verifies

Figure 66: Claimed Compliance Requirements in ProcessModule

] Properties 52 l 0= Outline

: BASIC
Mame | Structural Code Coverage
Description |
ID | 150-6.9.4.4

Claiming Process Modules
&2 Process Module Perform Module Test < MODULE:String> <-> 1S0-6.9.4.4

Figure 67: Claiming Process Modules in Requirement

w "2¥ Process Validas Module Test Process
W Requirement 150 |50 26262
v Requirement |50-6& Part &
v Requirement |50-6.% Software unit verification
W Requirement 150-6.9.4 Requiremnents and recommendations
Requirement 150-6.9.4.4 Structural Code Coveradk: Berform Module Test
&2 Process Module Perform Module Test < MODULE:String @ J-6.9.4.4
& Artifacts

Figure 68: Compliance Claims in Tree-Browser

User Manual of Process Modeling Tool
Version 1.2

Page 57

The compliance argumentation is done by adding Compliance elements.
The compliance element provide the linking to the process that are used
to satisfy the requirement and to the VerificationModules that are used to
verify the correct implementation of the requirements.

| H process It
[0..*] requirements

| = MavimalSafetylevel : Safetylevel = ASIL [H Requirement L

[0..*] subRequirements
= recommentedFrom : Safetylevel = ASIL_A

o recommentedTo @ Safetylevel = ASILD

[0..%] ClaimedComplianceReguirements [y
[0..*] ClaimingProcessModules uﬂ'\‘] requiredByfequirements .11 Requirement

[0..*] requiredRequirements

[0..%] processModules

| H ProcessModule L] [0..%] ContainedCompliances

| & inputartifacts : Artifact

f-3RefiningProdessModules

[0..*] Compliances [0+*] ProcessModuleCompliances

[0..1] RefinegiProcessModule
¥

DD Y]] Refiney B Compliance [] [0.%] ContainedCompliances

= Applicable : Boolean = true

]

[0..%] SubCompliances

[0..*] Coempliances

B verificationModule & N
| [0..%] VerificationModules [0..*] VerifiedCompliances

Figure 69: Compliance Elements

The Meta model for compliances shows that there are two containers that

can contain Compliance elements:

e Requirement: allows to store the compliance elements directly within
the requirements

e ProcessModule: allows to store the compliance argumentation within
the ProcessModule

While the first seams to be more natural from the standard point (it's

easier to manually check for completeness), the second is more modular,

especially if ProcessModules are re-used and refined.

If a Compliance element is stored within a Requirement element it

demonstrates the compliance to it's containing element. If a requirement

is contained within a ProcessModule the Requirement has to be explicitly

set (using the “"Requirement” association).

If a ComplianceElement is stored within a ProcessModule (or

VerificationModule) the satisfying Process is the container. If it is stored

within a Requirement, the ProcessModule and VerificationModule elements

have to be linked explicitly.

For hierarchic requirements the compliance argumentation is usually also

hierarchic. If stored within the requirements (or ProcessModules), the

“SubCompliances” have to be linked in order to close the argumentation.

If Compliance elements are stored within other compliance elements as

“ContainedCompliances”) there is no need to set the SubCompliance link.

User Manual of Process Modeling Tool Page 58
Version 1.2

The best way to create compliance argumentation is to

e Select a requirement (usually the main goal, i.e. a hierarchic
requirement)

e Generate a compliance structure with PMT (including the links to the
requirements)

¢ Move this compliance structure into the process that is compliant

e Fill the compliance argumentation with arguments, process links and
V&V activities.

The second step can be done using PMT action

Generate Compliance Structure - that js in the popup menu of the requirement

act|on The action creates a compllance argumentation tree with

e The same hierarchy as the requirements

e Compliance argumentations for hierarchic requirements using a default
argumentation that the requirement is satisfied since all sub-
requirements are satisfied.

e Variant terms in the compliance argumentation, provided that the
requirements had variant terms

8.2.5 Reuse & Linking

Processes can be reused in several ways:
1) Just reuse them as they are.
2) Instantiate them several times, see Section 8.2.7 for instantiation of
processes.
3) Reused within modeling.
The last point is scope of this section.

In general the model is a tree, visualized in the tree-browser. However it

is also possible to reuse elements by adding references. The following

elements support re-use:

e ProcessModules: process modules can refer to other process-modules
using the relation “SubProcessModuleReferences”.

e ProcessModules: can also re-use Parameters using the relation
“ParameterReferences”.

e Artifacts: Artifacts can refer to other artifacts using the relation
“SubArtifactReferences”.

User Manual of Process Modeling Tool
Version 1.2

Page 59

e Models: Models can refer to other models using the relation “Includes”.

e Requirements: Requirements can refer to other requirements using the
relation “RequiredRequirements”

e Terms: Terms can re-use enumerated constants using the modeling
element “EnumValueRef” and terms can refer to Parameter values
using the model element “ParamRef”.

References are not visible in the tree-browser, but in the generated

documents and the other views in PMT: Properties, ProcessView,

ComplianceView.

If process modules shall be re-used it is recommended to create a process
library and re-use processes from that in the modeled processes. See
Figure 70 for an example of reuse.

Figure 70 shows a Library with a Verification and Validation Process that is
included (using “SubProcessModuleReferences”) in all three qualification
kit processes of Validas. The model also contains a switch
“Project:ProjectKind” i.e. a ProcessVariable with an enumerated type that
allows to select a current project kind by binding the value. In the
example the switch is bound to the enumerated value “LibraryQKit”, which
enables the library process and disables all other projects by tailoring. The
process view of the process “Library QKit” shows the included/referred
sub-process “V&V"” which is not visible in the tree-browser, since it is
included as a reference into the process.

User Manual of Process Modeling Tool
Version 1.2

Page 60

% Process Modeling Tool

File Edit PMT Editor Window Help

4 Reuselibrary.pmt 2 = O || Properties 52 | 5= Outline
L™ Resource Set { BASIC
w & platform:/resource/ProcessModeler/git/prmt-prototype/bundles/de.w - -
v 8 Process Reuse Mame Library CKit
E Requirement IS0 150 26262 E——— '
w Process Module Validas Process Library A, Compliance View | 5., Projection |[2| Diag

v & Process Module V&V
Process Module Plan
Process Module Perform
Process Module Docurnent
w [3 Parameters

Library QKit

Modeler

[Process Parameter Project:ProjectKind
w Types
v 3 Enum Type ProjectKind
- Enum Value ToolQKit Start
(i Enum Value LibraryQKit
(i Enum Value SWOKit
w Process Module Library QKit <-> 8-12
w == EC Term (Project == LibraryQKit)
[E Param Ref Project
iz Enum Value Ref LibraryQKit
Process Module Build Library QKit
Process Module Tool CKit <-= 8-11
Process Module Software OKit <-> &
~ (i Stake Holders
i Stake Holder Modeler
w o Bindings

[Build Library QKitj

o]

w &g Binding Project := LibraryQKit
(i Enum Value Ref LibraryQKit
Types

Figure 70: Reuse Example

8.2.6 Tailoring

Tailoring describes the adaptation of a generic process to a specific
project.

In PMT this is done automatically by using so called “Variant Terms”, i.e.
terms over ProcessVariables that describe the condition under which the
process is present. If the term evaluates to false the corresponding
modeling elements are “tailored away”. If the condition evaluates to true
the corresponding element will be considered. Note: If the term cannot be
evaluated then the element is also present. This is true in Generic
processes that can be tailored.

The description of the evaluation is contained at the end of Section 8.1
(Term Evaluation). The parameters are described in Section 8.2.8. All
used modeling elements (Terms, Parameters) are described in the meta-
model Section 9.

User Manual of Process Modeling Tool
Version 1.2

Page 61

The re-use example of the previous section (Figure 70) can be used to
illustrate the tailoring. The tailoring can be analyzed by selecting the
project and starting the action “Evaluate Variants™ which results into the
following information, see Figure 71.

Checked Variants in 1 elements

Evaluating Variants in 1 elements!

evaluating variants in Reuse{Process)

ProcessModule Library QEit:(Project == LibraryQKit) = true
ProcessModule Tool CKit:(Project == ToolCKit) = false
ProcessModule Software CKit:(Project == SWOKit) = false

Figure 71: Evaluate Variants Result
8.2.7 Instantiation

Typically processes need to be instantiated several times (unless this is
not only done during V&V in VVT), this can also be done within PMT. There
are several modeling steps and properties that can be used to create new
process modules and to mark them as “Instances” of the generic process
(see Section 9.10.1).

Of course Instantiation of processes makes only sense for parameterized

processes. Typically the parameters are fixed within the project.

However there is a simplified way to create Instances of processes. This

can be done by the following steps:

e Creation of an additional ProjectParameter “LIST_OF_<Parameter>"
that contains all values that shall be instantiated to the parameter.

e Link the LIST_OF-Parameter to the process parameter as “Values from”
or “Iterator” parameter, such that the process parameter iterates over
the list parameter, i.e. received the values from it, see Figure 72. Note
that the list parameter has to have a List-Type, usually list of String.

e Create a Binding with all values of the list parameter (as a list term)
referring to the list variable and having the list-term contained.

User Manual of Process Modeling Tool Page 62
Version 1.2

@ Constant f3 = 2
Value From List Parameter Not Set | &
~ [Parameters s b 1l
[E Project Parameter LIST_OF_FEATURES:[String]

v Types . .
T Type String [Project Parameter FEATURE:String

Iterator Parameters

<i¥ List Type ListOfString

Figure 72: Assignment of Iterator Parameters

An example for a generic process, ready for instantiation as described
above is depicted in Figure 73. It shows the list parameter, as well as the
parameter definition in ProcessModule Specify Test Cases. Other module
(Implement Test Cases and Verify Tests) refer to the parameter.

L™ Resource Set

w e file/Ex/git/pmt-prototype/bundles/devalidas.spm.pmt.examples/Documentation/ManagementUninstantiated.pmt
~ %® Process Management
EI|§| Requirement TTR-0 Tool Test Requirements <-> Create Tool Test Suite
v Process Module Create Toel Test Suite <-> TTR-0
Process Module Create Test Framework
W Process Module Specify Test Cases <« FEATURE:String=
w [F Parameters
[Project Pararmeter FEATURE:String
Process Module Implement Test Cases < FEATURE:String=
4, Verification Module Verify Tests < FEATURE:String»
@ Artifacts
i Stake Holders
w &g Bindings
v &g Binding LIST_OF_FEATURES := [f1, f2, f3]
w4 List Term [f1, f2, f3]
@& Constantf1
@ Constantf2
@& Constant 3
w [F Parameters
[Project Parameter LIST_OF_FEATURES:[String]
W Types
T Type String
<4 List Type ListOfString

Figure 73: Example for Automatic Instantiation

On a well-defined project the instantiation can be started by selecting the
process to be instantiated and by selecting the popup action “Instantiate
Process Module”, see Figure 74.

User Manual of Process Modeling Tool
Version 1.2

Page 63

v & Process Module Create Toe '™ 7 - 7™ n
Process Module Create e ¢
v &2 Process Module Specify Mew Sibling *
w [F Parameters

Und Ctrl+Z
[E Project Paramete e I
Process Module Implen Redo Ctrl+¥
@\ Verfication Module Ver ‘-f Cut
Artifacts
i Stake Holders 5 Copy
w &g Bindings Paste
W g Ifhndlng LIST_OF_FE! Delete
w 43x List Term [f1, 2,
@ Constant 1 Validate
@ Constantf2 Confrol...
@ Constantf3
+w [Parameters Show DOT (Graphviz)
[Project Parameter LI Export DOT Image (Graphviz)
v Types Export VWT Model

T Type String

Evaluate Variant
<% List Type ListOfString Valuate anants

Project Overview

Update Project Status

Project Status Details

Infer and 5et Types

Check Types

Show Parameter Statistic

Export Pararneter Values To Excel
Import Parameter Values From Excel
Export Process Parameters (Excel]
Instantiate Process Module

Word Generators >

Figure 74: Starting Automatic Instantiation on Process Module

After starting the action, the user is asked to conform the instantiation as
shown in Figure 75.

% Create 3 ProcessModules bt

Instantiate 3 Processes in Create Tool Test Suite

Yes Mo

Figure 75: Confirmation of Automatic Instantiation

Finally PMT will display an information about the instantiated process
modules as shown in Figure 76. Note that only processes which have

User Manual of Process Modeling Tool Page 64
Version 1.2

parameters or references to them) will be instantiated, others not (Create
Test Framework in the example).

O >
Instantiated Processes in Create Tool Test Suite
dInstantiated 3 Processes in Create Tool Test Suite! ~
instantiateProcessModules in 'Create Tool Test Suite’
do not instantiate ProcessModule 'Create Test Framework!
instantiate ProcessModules in 'Specify Test Cases'
instantiated 'Specify Test Cases' to 'Specify Test Cases for FEATURE-»f1'
instantiated 'Specify Test Cases' to 'Specify Test Cases for FEATURE-=>f2'
instantiated 'Specify Test Cases' to 'Specify Test Cases for FEATURE-=f3'
instantiate ProcessModules in 'lrmplement Test Cases'
instantiated 'lmplement Test Cases' to 'Implement Test Cases for FEATURE-=f1"
instantiated 'Implement Test Cases' to 'Implement Test Cases for FEATURE- = f2'
instantiated 'lmplement Test Cases' to 'Implement Test Cases for FEATURE-=f3'
instantiate ProcessModules in 'Verify Tests'
instantiated "Verify Tests' to 'Verify Tests for FEATURE- =f1'
instantiated Verify Tests' to "Verify Tests for FEATURE-»f2'
instantiated ‘Verify Tests' to 'Verify Tests for FEATURE- = £3'
do not instantiate ProcessModule 'Create Tool Test Suite’
do not link ProcessModules 'Create Test Framewerk!
link ProcessModules in "Specify Test Cases'
linked ProcessMoedule 'Specify Test Cases' to 'Specify Test Cases for FEATURE-=f1"
linked Input Artifact ‘Specification’ to 'Specification for FEATURE-=f1"
conected 'Specification for FEATURE->f1" -» 'Specify Test Cases for FEATURE-=f1" W
Copy Text Cancel

Figure 76: Result Information of Automatic Instantiation

The result of the instantiation is that the parameterized processes have
their instances as sub-processes, see Figure 77 and Figure 78. Note that
not only the processes have been instantiated, but also the artifacts have
“Sub-Artifacts” for each instance: The artifact “"Test Specification” has now
three sub-artifacts:

e Test Specification for FEATURE->f1

e Test Specification for FEATURE->f2

e Test Specification for FEATURE->f3

User Manual of Process Modeling Tool Page 65
Version 1.2

r E ™\
: Create Tool Test Suite
Create Tool Test Suite |
Tester
Tester
Specification
e T . A
[Specify Test Casesj [Create Test Framework) Specify Test Cases [Create Testj Framework)
: , i J|
| 4 A | y
| Test Speciﬁcation'] | Test Environment°| | Test Speciﬁcation'] | Test Environmenﬂ
T N P T N p
: A ¥ : e §
I
: (Implement Test Cases] L | Implement Test Cases"
1 T 1
\ ' r)
"\ [Test Implementation'] \ y
N J \ | Test ImplementationQ|
N \ z
\ ’
s
- (]
> S -
Test Review Reportr] IT‘est Report‘] ’,' RS -
Y / | Test Report'] | Test Review Report“]
\ v
Figure 77: ProcessModule Instantiation
f Specify Test Cases)
Tester
Specification for FEATURE->f2'1 Specification for FEATURE->f3D| Specification for FEATURE->f1 '1
(Specification) (Specification) (Specification)
Y 1] v
[Specify Test Cases for FEATURE->f2) (Specify Test Cases for FEATURE->f3j [Specify Test Cases for FEATURE->f1]
I 1
Y v
Test Specification for FEATURE->f2'] Test Specification for FEATURE->f3'] Test Specification for FEATURE->f11
(Test Specification) (Test Specification) (Test Specification)
. 7
Figure 78: ProcessModule Created Instances
8.2.8 Variables & Variants
Variables and Variants are used for tailoring, see Section 8.2.6.
8.2.9 Layouting
The graphical notation of the processes is done automatically by
converting the model into the dot format of graphviz, see
http://www.graphviz.org for more details.
The representation can also be seen (for debugging) by exporting it into
textual format and piping it into an online tool as graphviz for example.
User Manual of Process Modeling Tool Page 66

Version 1.2

http://www.graphviz.org/

The user can impact the layout in two ways:

1) By specifying layout priorities in the elements.

2) By specifying “invisible” between elements using “layout

before/after” properties

Consider the example in Figure 79. It contains a process module “PM” with
three sub-processes: “A”,”"B” and "“C”. The order of them is not
determined, since they are independent, so the left from right order is
undetermined by the model. In the example in Figure 79 the order is “"B”
before “C” before “A”".

& Layouts.pmt &3 = B || Properties | o= Outline | =L, Process Module View 2

L™ Resource Set

w il platform:/resource/ProcessModeler/git/prr P M R a n d 0 m

v %9 Process Layouts
W Process Module PM Random
Process Module A
Process Module B Start
Process Module C / | \
Process Maodule PM Pricrity
Process Module PM Ordered
w -,} Stake Holders

& Stake Holder Modeller [C) [A)
~ 7

Modeller

Figure 79: Layout Example: Unlayouted (random)

If the user wants to change the order to “A” before “B” before “C” it can
be done using the Layout priority. Setting the LayoutPriority attribute to

- A=30

- B=20

- C=10
This generates the desired layout as shown in Figure 80:

User Manual of Process Modeling Tool
Version 1.2

Page 67

PM Priority

Start

i N
Modeller
[A(30) | [B(20) | 1 C(10) |
~ 7

Figure 80: Layout Example: Layouted using Priorities
If the elements shall be ordered then the layout will be done by adding
(“invisible”) lines as specified. Figure 82 shows the result by specifying the
ordering using “LayoutBefore” and “LayoutAfter”. Please note that from
the view-point of "B” (middle), B is layouted after A and before C. So

hence the attributes in B are specified as shown in Figure 81.

[Properties 2 | 5= Outline | L, Process Module View

i BASIC
|

Name B middle

LAYOUT
+ | Layout Priority | 20 |

Layout TOP_BOTTOM

@ || @

Layout Before

Layout After
&2 Process Module C after

&R Process Module A before

Figure 81: Layout Example: Specification of Layout Order

User Manual of Process Modeling Tool
Version 1.2

Page 68

PM Ordered

Start
AN

Figure 82: Layout Example: Layouted by Ordering

8.2.10 Tools

Tools can be used to support the application of methods in processes. In
safety relevant processes it is important to use the tools safely. Therefore
they have to be classified and eventually qualified. The TCA tool, see
http://www.validas.de/en/services/tca/ is a special purpose tool for all
aspects of tool qualification. Therefore we focus in PMT only of the safety
process relevant aspects. These are

e The use cases of the tool (within the process)

e The supported methods required from safety standards

e A preliminary classification with an explaining argument.

Note that the preliminary classification is not standard compliant but
might be an indicator for the selection of tool candidates that can be
qualified, or do not need to be qualified.

Tools are modeled globally in the Process container as shown in the
example in Figure 83.

User Manual of Process Modeling Tool
Version 1.2

Page 69

http://www.validas.de/en/services/tca/

% Process Modeling Tool

File Edit PMT Editer Window Help

e Reuselibrary.pmt %! MetaProcess.pmt &2 = 8 (|38 Properties &% EE Outline
I Resource Set BASIC

w & platform:/resource/ProcessModeler/Users/oscar/Downloads/MetaPrc

~ % Process Validas Meta Process Name | Excel

a) - ;)
Il Requirement PD Process Description Requirements <-> Definel| | pescription | MS Excel is used to handle parameters and to perform V&V checks.

v Process Module Define Process <-> PD
Process Medule Plan Process Modeling Tool Owner Not Set
Process Medule Create Process Model
Process Medule Validate Process <LIST_OF_VERIFICATIONS:[
Process Module Generate Report <PROCESS_OK:Boolean»

@ Artifacts Process Modules
& Stake Holders & Process Module Export Process Parameters
> eg Bindings -, Verification Module Check Artifacts <PROCESS_ARTIFACT:String>
;‘% Methed Validas Qualification Methodology J, Verification Module Check Compliance < COMPLIANCE:String>
v Tools

-, Verification Module Check General Aspects

w Toor Wit - Verification Module Check Issues <[55UE:String>

*? Tool PMT -, Verification Module Check Parameters < PARAMETER: String >
*? o E'XCEI -, Verification Module Check Processes <PROCESS:String>
il'?rp:lu' e -, Verification Module Check Roles <ROLE:String>

-, Verification Module Check Tools < TOOL:String >
\ Verification Module Check Variants <VARIANT:String >
-, Verification Module Check Verifications <VERIFICATION:String>

Preliminary Classification | Uncritical

Excel is only an editor for PMT / VWT models that is redundant te those tools,

Classification Explanation

Figure 83: Tool Modeling

8.2.11 Project Management

It is not the goal of PMT to replace professional project management tools.
PMT can provide input to them and can be used to demonstrate some
requirements on project management tools by some simple features, like
management of instances or requirements coverage.
PMT supports project management by some basic features

e Checking requirements coverage (useful during process development)
e Determining efforts

e Managing instances of processes

The Project Management Informations are grouped within the collapsible
group “Management” in the property view.

The PMT manages the status of the projects by

e A status of the artifacts with the following values (see Section 9.2.1):
DEFINED

PLANNED

READY

IN_PROGRESS

DONE

e The same status can be specified for the ProcessModules

0O O O O

User Manual of Process Modeling Tool
Version 1.2

Page 70

Note that PMT can determine the status semi-automatically, i.e. if all
inputs of a task (=ProcessModule) have the status DONE, then PMT can
infer the status of the task to "READY". If user manually sets the status of
the tasks to DONE (or IN_PROGRESS), PMT can update the status of the
tasks outputs accordingly. The PMT status updates can be triggered using
the action “Update Project Status” on Process and ProcessModule
elements.

8.2.11.1 Project Overview

PMT can compute the project overview by starting the Action “Project

Overview” on Processes (see 7.2.2).

This results into a textual description of the project status including the

following information (see Figure 84):

e Effort Computation (and completeness): In case there are no efforts
specified (value=0) status will contain warnings: “Could not compute
effort for”, see Figure 84.

¢ Number of Requirements to satisfy

e Number of Compliances to contribute, including percentage of
compliance

¢ Numbers of Required Process Modules (to achieve compliance) and
Verification Modules

e Status of Tasks (ProcessModules) and Artifacts

Project Status in Management

iProject Status of Management:

Requirements: 2

Compliances: 2 (100.00%)

Required Process Modules:0

Required Verification Modules:0

Tasks DOME: O (out of 5): Effort 0.0=0.00%
Tacks OPEM:5

Tasks READY:0

Artifacts DOME: 0 (out of 2): =0,00%
Artifacts OPEM:2

Artifacts READY:D

Copy Text Cancel

Figure 84: Initial Project Status (Overview)

User Manual of Process Modeling Tool
Version 1.2

Page 71

8.2.11.2 Project Status Details

PMT can compute the status details on projects. This is based on the
status of the artifacts and on the status of available inputs.

This results into a textual description of the project status including the

following information (see Figure 84):

e Effort Computation (and completeness): In case there are no efforts
specified (value=0) status will contain warnings: “Could not compute
effort for”, see Figure 84.

¢ Number of Requirements to satisfy

e Number of Compliances to contribute, including percentage of
compliance

e Numbers of Required Process Modules (to achieve compliance) and
Verification Modules

e Status of Tasks (ProcessModules) and Artifacts

Status in 1 element

Display Status in 1 elements! A

Status in selected Managerment(Process)

Responsible: Tester

Created By: Verify Tests = DEFINED

Created By: Create Tool Test Suite = DEFINED
Minimal Status of Creators = DEFIMED

Responsible: Tester
Created By: Create Test Framework = DEFIMNED
Minirmal Status of Creators = DEFINED

Figure 85: Initial Project Status (Details)

User Manual of Process Modeling Tool Page 72
Version 1.2

8.2.11.3 Excel-Interface for Project Management

To interface with other project management tools, PMT uses an Excel-
interface to export & import the project status. Export & import can be
started from ProcessModules using the right mouse button (popup-action)
as shown in Figure 86.

Import Project Status (Excel)
Export Project Status (Excel)

Figure 86: Excel-Interface for Project Status

The Excel Interface consists of the following Information (see Figure 87)

for all manageable events:

e The type: Artifact/ProcessModule/VerificationModule

e The name

e The state

e The ID (if specified)

e The qualified name (separated using “.”, which should not occur in
names)

e Description

e Effort (only for ProcessModules & VerificationModules)

e Progress (only for ProcessModules & VerificationModules)

e Planned Start Date (only for ProcessModules & VerificationModules)

e Planned End Date (only for ProcessModules & VerificationModules)

A B c o] E F G H | J
@
E ©
2 5 & &
5 = z g2 g 5 5
1 Type = n o <] o o o o o
24 | Arifact Test Specification for FEATURE-»f2 DEFINED Create Tool Test Suite.Test Specification. Test Specification for FEATURE-»f2 Concrete £
25 | Artifact Test Specification for FEATURE->f3 DEFINED Create Tool Test Suite Test Specification Test Specification for FEATURE->f3 Concrete =
26 ProcessModule Create Tool Test Suite DEFINED Create Tool Test Suite Createsa® 0 0 25.04.2019 25.05.2019
27 IF‘rocessModu\e Create Test Framework DEFINED Create Tool Test Suite.Create Test Framework Create ate 40 0
28 |ProcessModule Implement Test Cases DEFINED Create Tool Test Suite Implement Test Cases implement 4 1]
29 |ProcessModule Implement Test Cases for FEATURE-+f1 DEFINED Create Tool Test Suite.Implement Test Cases.Implement Test Cases for FEATURE=>f1 implement 5 0.01
30 |ProcessModule Implement Test Cases for FEATURE-»f2 DEFINED Create Tool Test Suite Implement Test Cases Implement Test Cases for FEATURE->f2 implement 4 1]
31 ProcessModuls Imnlameant Tast Cases for EEATLIRE-2f2 NEFINED Create Tonl Test Suite Imnlament Test Cases Imnlement Tast Casas for FEATIIRE->f2__imnlsment 4 n
STATUS (O] 4

Figure 87: Project Status in Excel

The status can be changed within Excel and will be-reimported into PMT.
All changes will be listed in an import log message, see Figure 88 for an
example. Please check this log carefully for errors and warnings. Note that
the updated model will not be marked as changed in PMT (due to a
current known issue) and safe it manually to a file.

Note that the “qualified name” is used to find & identify the elements in
the model. All other elements can be changed, for example also the name
or the ID.

User Manual of Process Modeling Tool
Version 1.2

Page 73

Successfully imperted 9 updates from CreateToolTestSuite_Status.xls

Processing 38 status lines:

Updated 9 states, Please save your model.!

Update 1 status of artifact Test Environment from DEFINED to DONE

Update 2 status of artifact Test Environment for FEATURE->f1 from DEFINED to READY

Update 3 status of artifact Test Environment for FEATURE-=>f2 from DEFIMED to IN_PROGRESS

Warning in row 9 invalid state COOL found, Allowed states are: DEFINED, DONE,READY, IN_PROGRESS, PLAMNED. Ignaring line.
Warning in row 11: cannot find Artifact Create Tool Test Suite. Test Implementation. Test Implementation for FEATURE-=>f11. Ignoring

Warning in row 17: cannot find Artifact . Ignoring

Update 4 Effort of ProcessModule Implement Test Cases for FEATURE-»f1 from 4.0 to 5.0

Update 3 Progress of ProcessModule Implement Test Cases for FEATURE->f1 from 0.0 to 0.01

Update & Effort of ProcessModule Specify Test Cases from 2.0 to 3.0

Update 7 Effort of ProcessModule Specify Test Cases for FEATURE->f1 from 2.0 te 4.0

Update & status of ProcessModule Specify Test Cases for FEATURE-»2 from DEFINED to DOME

Update 9 status of ProcessModule Specify Test Cases for FEATURE-»f3 from DEFINED to DOME

Warning in row 37: invalid state OK found. Allowed states are: DEFINED, DOME,READY, IN_PROGRESS, PLANMNED. Ignaring line.

Coy Tet

Figure 88: Project Status Import Log

8.2.11.4 Project Status Update

Based on a current project status PMT can compute the next tasks. For
Example if all inputs and preceding tasks are in status DONE, than the
task can be set to status READY. This status update can be triggered
using the following action “Update Project Status” (on Process- and

ProcessModule elements), see Figure 89.

User Manual of Process Modeling Tool
Version 1.2

Page 74

Process fAndsla Ceanta Tr,-ml Tert Coribm « =~ TTD M
Mew Child b

Mew Sikling »

Types

Undo Ctrl+Z
Redo Ctrl+Y

\-f ':th
2 Copy
Paste

W Delete

Validate

Contral...

Show DOT (Graphviz)

Export DOT Image (Graphviz)
Export VVT Model

Evaluate Variants

Project Overview

Update Project Status

Figure 89: Start of Status Update

The result (changes states) is show in a text dialog, see Figure 90.
’ O X

Updated Status in 1 selected element

ilpdate Project Status in 1 selected element:
Updated 1 status in selected Create Tool Test Suite{ProcessModule)
Update status of ProcessModule Specify Test Cases for FEATURE-=f3 from DEFINED to READY

Figure 90: Result of Status Update

8.3 Consistency & Process Interfaces

A process is considered to be consistent if the inputs and outputs of it are
consistent with the sub-processes (if available). For example if a process P
with only one sub-process S has an input the input must also be an input

User Manual of Process Modeling Tool Page 75
Version 1.2

of the sub-process. Otherwise there would be “unused” inputs in the

process. If many sub-processes are contained, than at least on process

should need the input and should process it.

While this is an obvious consistency condition it is hard to enforce due to

two reasons

1. It has to be (automatically) checkable

2. It might lead to huge number of input outputs on the top-level and
contradict the desired level of abstraction.

The first item is solved by adding a validation rule to PMT: “Process

modules have compatible interfaces”. The second is achieved by using the

recursive structure of artifacts. On the containing process it is allowed to

have composed artifacts (hierarchic) as inputs and outputs. The sub-

processes can then access the sub-elements of the artifacts.

Figure 92 and Figure 93 show an example of a main process “Main” with
two Sub-Processes “Sub1” and “Sub2” that process hierarchic artifacts “"A”
and “"B” as described in the tree browser depicted in Figure 91. The
abstract view (Figure 92) of the process module “Main” shows the input
and output using the composed artifacts A and B. The detailed, inner view
of "Main”, see Figure 93 shows how the sub-components work on the sub-
artifacts.

v Qf) Artifacts
w) Artifact A
€ Artifact AT
€ Artifact A2
w & Artifact B
€ Artifact B1
€ Artifact B2

Figure 91: Hierarchic Artifacts for Interface Example

Container

Role

___'

Figure 92: Abstract Interface (Upper-Level)

User Manual of Process Modeling Tool
Version 1.2

Page 76

Figure 93: Specific Interface (Lower-Level)

8.4 Refinement

Refinement is a frequently used concept for handling similar but different
things, for example in Object oriented programming languages, where
“inheritance” is useful.

PMT supports also refinement of processes. A general process can be

refined by more specific processes, for example a compiler qualification
project might specialize a general qualification project by adding additional
inputs (Language compliance suite) or additional outputs (coverage report
of the compiler). Also it is possible to define a more specific artifact, e.g. a
compiler qualification report that refines the tool qualification report.

If a process refines another process the input output artifacts of the
refining process are the addition of general artifacts and the specific
artifacts, except if the specific artifacts refine the more general ones.

The refinements can be specified within the Extended property tab of
ProcessModules/VerificationModules and Artifacts/Models. Refinements are
visualized as displayed using “:” in the tree browser, see Figure 94.

w ¥ Process
v Process Module Cualifications
Process Module Tool Cualification
Process Module Compiler Qualification : Tool Cualification
v @ Artifacts
€ Artifact QKit
@ Artifact Language Suite
@ Artifact Tool Qualification Report
@ Artifact Compiler Qualification Report : Tool Qualification Report
~ [Stake Holders
i Stake Holder Qualifier

Figure 94: Structure with Refinements: Compiler Qualification refined Tool Qualification

User Manual of Process Modeling Tool
Version 1.2

Page 77

The graphic representation of the refinements is done using “(refines
<name>)"” annotations, see Figure 95.

Language Suite) QKit

:Qualifioations

I Qualifier

Y
(Tc:-ol Clualiﬁcation)
11

Compiler Quallfcatlon
(refines Tool Qualification)

y \
: : : h |
Compiler Qualification Report . :
(refines Tool Qualification Report)T Tool Qualification Report‘]

Figure 95: Graphical Notation of Refinements

The “inherited” artifacts can be seen in the process report (and
compliance report) that lists all artifacts (alphabetically) including
annotations for inherited artifacts in the lists of Inputs and outputs, see
Figure 96. Note that the diagrams show the inner view representing the
contained sub-processes and their input outputs, hence the Input

“Language Test Suite” is only visible in the outer view of the containing
processes.

User Manual of Process Modeling Tool
Version 1.2

Page 78

ProcessModule: Compiler Qualification

View of Compiler Qualification

Compiler Qualification
(refines Tool Qualification)

Cualifier

Test Suite
(QKit)

|

Execute Tests
(from Tool Qualification)

i
1
|

Document Qualification
(from Tool Qualification)
T

Y
| Tool Cualification R&pﬂl’tl]
N r
MName:
Compiler Qualification
Description:

A compiler qualification is a frequent case where the qualified tool is a compiler.
Usually test strategies for compilers are hard to define, therefore code coverage (within
the compiler) might be used to create the confidence.

Qualified Name:
Compiler Qualification
Refines Process Module:
Tool Qualification
Owner (Inherited):
Qualifier

Inputs:

® language Suite, see Tahle 27
o QKit from refined Tool Qualification, see Table 28
Outputs:

* 'Compiler Qualification Report’ refines "Tool Qualification Report’ from Module Tool
Qualification', see Table 24

* Llanguage Suite, see Table 27

Figure 96: Generated Table for Compiler Qualification

For the sub-processes of refining elements the same principle applies as
for the interfaces: if a process module refines another process module it
automatically inherits all sub-elements from the refined elements. If a

User Manual of Process Modeling Tool
Version 1.2

Page 79

14

Sub-ProcessModule refines an inherited sub-ProcessModule it “overwrites
/ replaces it, i.e. the refined element is not inherited.

This is illustrated using the example refinements that shows different
qualification processes. Figure 97 shows an example (simplified)
qualification process with two sub-processes: "“Execute Tests” and
“Document Qualification”.

v "2" Process Refinements
v Process Module Qualifications T | Q |.f. t.
v &# Process Module Tool Qualification 00 ua I Ica Ion
Process Module Execute Tests

Process Module Document Qualification Qualifier
Process Module Compiler Qualification : Tool Qualification
P Module TCA Qualification : Tool Qualification .
&% Process Module
& Test Suite

w Process Module Apply QST with TAU : Tool Qualification
Process Module Run TAU : Execute Tests
Process Module Apply QST without TAU : Tool Qualification
Process Module Run Mixed Tests < TEST:TestType>

(QKit)

w {) Artifacts '
& Artifact QKit [Execute Tests]
@ Artifact Language Suite : Test Suite T
@ Artifact Tool Qualification Report I
@ Artifact Compiler Qualification Report : Tool Qualification Report : J
& Artifact Test Report "I
@ Artifact Human Tester: TAU Test Report

T
@ Artifact Excel Test List : Test Report |

v i Stake Holders
i Stake Holder Qualifier
Types

[Document Qualification J

4
Tool Qualification Reportw]

”

Figure 97: Simplified Qualification Process

The Process Module “Apply QST with TAU” refines this module and
“replaces the “Execute Tests” with the automated “Run TAU” and replaces
the “"Document Qualification” by “Generate Documentation”, see Figure
98.

User Manual of Process Modeling Tool Page 80
Version 1.2

&2 Process Module Qualifications
w & Process Module Tool Qualification ' - n
Process Module Execute Tests Apply QST Wlth TAU
Process Maodule Document Qualification
Process Module Compiler Qualification : Tool Cualification

v Process Module TCA Qualification : Tool Qualification Qualifier
Process Medule Run Tests Manually : Apply Q5T without TAU

w & Process Module Apply QST with TAU : Tool Qualification TAU
Process Module Run TAU : Execute Tests (QK“:)
Process Module Generate TQR : Document Qualification

Process Module Apply QST witheut TAU : Apply QST with TAU |
w Process Module Run Mixed Tests < TEST:TestType>) J
Process Module Run a Test using TAU < TEST:TestType>
Process Module Run a Test Manually < TEST:TestType= : Run a Test using TAU Run TAU
Process Medule Prepare Test (reﬁnes Execute TEStS)
[E Parameters T
w @ Artifacts "'
@ Artifact QKit

& Artifact Language Suite : Test Suite [Test R it TCA Model
@ Artifact Tool Qualification Report | es epo (QK“:)
@ Artifact Compiler Qualification Report : Tool Qualification Report

AY
@ Artifact Test Report \
@ Artifact Human Tester: TAU

@ Artifact Excel Test List : Test Report (

Fa

4 »
v § Stake Holders Generate TQR. .
§ Stake Holder Qualifier refines Document Qualification)

Types .
1

Y
| Tool Qualification Repoﬂ']

e J

Figure 98: Refined Process Module Example

Since both sub-modules are replaced there is no difference (except with
the interfaces) in this example. More interesting is the example Process
Module “TCA Qualification”, which refines the “Apply QST with TAU” and is
re-using (using “SubProcessModuleReferences”) a manual test execution

module “Run Tests Manually” instead of the inherited process module
“Run TAU"”, see Figure 99.

User Manual of Process Modeling Tool Page 81
Version 1.2

TCA Qualification
(refines Tool Qualification)

Qualifier

(QKit) (refines TAU)

ra
&

Test Suitej Human Testerj

Run Tests Manually
(refines Run TAU)

#

Excel Test List
(refines Test Report)

v
Test Report'] TC&EE}C’EI |

A
N

3 »
(Generate TQR
(

F

refines Document Qualification)
I

h J
Tool Qualification Report'1

.

Figure 99: Complex Refined Process Module Example

The generated process report shows all sub-processes correctly, see
Figure 100.

8.5 Validation

PMT supports three forms of validations that are described here:
e Syntactic / Automated Validation: Validates the model for selected
consistency checks

e Graphical Validation: Shows the process graphically and allows the
user to detect anomalies immediately

User Manual of Process Modeling Tool
Version 1.2

Page 82

e Semantic Validation: This is a detailed review according to the so called
meta-process of PMT that can be performed using Excel and VVT (as
any other verification and validation planned using PMT)

8.5.1 Syntactic Validation

Syntactic validation applies automated consistency rules to the selected
model element and their children in the tree (it does not consider
references). It can be started using the Validate action on any element in
the tree browser, see Figure 100.

v 98 Process Validas Modi '~ Tot Pemnes

B Requirement IS0 D ’
w Process Module P Undo Ctrl+7
Process Modul -
Process Modul Fiedo e
4, Verification Mc Cut
4, Verification Mc 2 Copy
w og Bindings
v oy Binding Mg [Paste
w 4ir List Terrr Delete
@ Cons
@ Consl Validate
@ Consl Control...

Figure 100: Starting the Validation

The results of the validation are shown in a dialog (see Figure 101) and in
the Diagnostic View as described in Section 7.6.

% Validation Problems W

IQI Problems encountered during validation

Reason:
Diagnosis of Process Validas Module Test Process

Export Markers OK

3 Verification Module Analyze Test Resultsho Verified Compliances found for Verification Module

i Verification Module Analyze Statement CoverageMo Verified Compliances found for Verification Module

Figure 101: Validation Result Dialog

The following validation rules can be configured using the preferences
mechanism from Section 8.8, as shown in Figure 102. Note that Validation
configurations can be exported into preference files and reloaded such
that the preferences can be harmonized within a given project where
several users are working together.

User Manual of Process Modeling Tool
Version 1.2

Page 83

%7 Preferences

type filter text

Filtering
Validation
Projection

EMF Compare
~ Process Modeling Tool

Validation

Process Modeling Tocol validation

* Generic rules
[~ The description is OK

[The type name is unique
[The global name is unique
[The types are OK

Select All | | Deselect All

* Process rules
Generated

[+] Tool used in Process

Model elements are consistent

Included elements are consistent

Attributes have elements

[+] Associations have elements

Meta Model has no cycles

Process Modules have input Artifacts
Process Modules have output Artifacts
Stakeholders are defined

Process Modules have compatible interface
Process Medules have inputs

[] Artifacts have paths defined

[+] Artifacts have Readers/Verifiers defined

[+] Artifacts have Creator defined

[+] Artifacts are used

Compliances are linked with Verification Modules
Compliances are linked with Process Elements
Mot Applicable Compliances are not linked
[] Verification Module verifies exactly one input
[+] Verification Module is used in Compliances
[Verification Module corresponds to Criteria

Select All | | Deselect All

* Data Type rules
[The types are OK

[+ The references are OK
[/] The bindings are QK

Select All | | Deselect All

* Model rules
[] The only one root is present

[~] The containment is correct
Meta Model has no cycles
[~] Target type is defined

Apply and Close

Cancel

Figure 102: Configuration of Syntactic Validation Rules

User Manual of Process Modeling Tool

Version 1.2

Page 84

8.5.2 Graphical Validation

»,Only Nice Processes are good processes”, at least in the sense of clarity
and understandability this is definitely true. This is the principle of the
graphical validation. Graphical validation is done using the graphical
Process View that shows the process graphically. Typical defects, like
wrong sequencing or missing inputs/outputs can be seen immediately.
Note that for graphical validation graphviz is required (see Section 6) and
the process modules have to have owners.

A graphically validated process is on the title page of this document.

8.5.3 Semantic Validation

The semantic validation is an intensive manual review of the process,
guided by the meta-process and supported from PMT, Excel and VVT. Most
details can be found in the MetaProcess.pmt description, which is included
in the example folder of the PMT.

The core idea is that the meta-process is parameterized by the process
modeling elements of PMT, i.e. it has a Parameter “VerificationModule”
and a corresponding parameterized VerificationModule that iterates over
all Verification modules that the user has modeled. The list of these
parameter instances is exported from PMT. It is the first (and only) step of
the semantic validation done in PMT, see Section 8.6.3.3.

8.6 Interfaces

PMT tool has several interfaces that are described in this section.

8.6.1 ProcessModule Ex- and Import

PMT allows to export ProcessModule elements into PMT files. By doing this
PMT models can be copied, moved, merged etc. in a modular way. The
export can be started using the popup-action on ProcessModule elements:

“Export ProcessModule (.pmt)”, see Figure 103.

v &2 Process Module Qualifications
Process Module Tool Qualification
Process Module Compiler Qualification : Tool Cualification
Process Modulh ™ * —~ "=~ o
Process Modul New Child ’

= (=Y

Process Madul Mew Sibling 5

32 P Modul

rn:u.cess odu o s

f:) Artifacts -

[Stake Holders Redo Ctrl+%
Types

Export ProcessModule {pmt)
Export Project Status (Excel)

Figure 103: Starting PMT Export to File

User Manual of Process Modeling Tool
Version 1.2

Page 85

The stored PMT file contains only the selected ProcessModule element(s)
including all references and containers. It can be imported into any other
PMF model (on the Process level) by starting the corresponding “Import
ProcessModule (.pmt)” popup action on Process elements, see Figure 104.

] Gii Process Validas Oalifiratinn Praceccee

g Requirement Mew Child 7
E Requirement

= i Undao Cirl+Z
5 Requirement -
& Requirement Redo Crl+Y
(=l .

=| Reguirement Cut

E Requirement

g Requirement Import ProcessModule (pmit)

Process Mod Check Instantiation Complete
Process Mod Check Planning Complete

Figure 104: Starting PMT Import from File

After importing the model a result dialog shows the imported elements,
see Figure 105.

O x

PMT File Import Finished - Imported ProcessMedule (60) from ENsvn 5026262 TOA trunk\Certificatiom\PMT\Documentation\ TCA Cual

{Process Validas Qualification Processes : added processModules : Qualifications [ProcessMaodule)

Process Refinements / ProcessMoedule Qualifications / ProcessModule Tool Qualification / ProcessModule Execute Tests : linked inputd
Process Refinements / ProcessModule Cualifications / ProcessModule Tool Qualification / ProcessModule Execute Tests : linked outpu
Process Refinements / ProcessMedule CQualifications / ProcessModule Tool Qualification / ProcessModule Execute Tests @ linked Refini
Process Refinements / ProcessModule Qualifications / ProcessModule Tool Qualification / ProcessMedule Document Qualification : lin
Process Refinements / ProcessModule Qualifications / ProcessModule Teol Qualification / ProcessModule Document Qualification : lin
Process Refinements / ProcessMedule Cualifications / ProcessModule Teol Qualification / ProcessModule Decument Qualification : lir
Process Refinements / ProcessModule Qualifications / ProcessModule Tool Qualification : linked inputArtifacts : QKit { Artifact)

<

CopyTes

Figure 105: Import Log Messages

8.6.2 VVT

The Verification and Validation Tool (VVT) works on models with the
extension .vvt. PMT can create an initial model, called “Schema”
containing all selected verification modules with corresponding criteria.
This schema then needs to be instantiated for every element in the
current project. For example if you plan to test modules based on a
verification process modeled using PMT, then the corresponding V&V
Schema can be exported using the VVT interface. VVT can handle
instantiation of the schema (to all test modules in the example) in a

User Manual of Process Modeling Tool
Version 1.2

Page 86

similar way as PMT can instantiate processes to manage them in Section

8.2.7.

VVT Export can be triggered on Process and ProcessModules as shown in

Figure 106

~ &2 Process Module Define Process <-> PD
Process Module Plap Mrosare Bdadalina

Process Module Cre:
Process Module Valic
Process Module Gen
Qf:) Artifacts
i Stake Holders
&g Bindings
@ Method Validas Qualific
~ [§il Tools
#1 Tool WT
1 Tool PMT
*ﬂ Tool Excel
1 Tool Jira
Types

[«

4=

b 4

Mew Child
Mew Sibling

Undo Ctrl+Z
Redo Ctrl+
Cut

Copy

Paste

Delete

Validate

Contral...

Show DOT (Graphviz)
Export DOT Image (Graphviz)
Export VWWT Model

Evaluate Variants

Figure 106: Start VVT Export

After selecting a destination (file) for the VVT model, the model is
converted. After the export is finished, PMT shows a log file with the

created checks, as shown in Figure 107.

User Manual of Process Modeling Tool

Version 1.2

LA

Page 87

O >

Exported Define Process into ChCQualification\ECUTESTBug223ECU-TESTVCOKt\Model\DefineProcess_Schemnawwvt

Export Define Process into V&IV Project Define Process! A
1. Created implicit check for 'Checks at https://svn.inwvalidas.de/repos/15026262_Toolqualifizierungtrunk/Ce
2. Created implicit check for 'Check of Compliance Model'

3. Created explicit check for 'Check Compliance'

4, Created check for Criterion' COMPLIAMCE-C1:Description’

5. Created check for Criterion' COMPLIANCE-C2: Completeness’

6. Created check for Criterion' COMPLIAMCE-C3:Process Assignment’

7. Created check for Criterion' COMPLIANMCE-C4:Verification Assignment'
8. Created check for Criterion' COMPLIAMCE-CS:Implicit’

4. Created check for Criterion' COMPLIAMCE-CE:MNA Explanation’

10. Created implicit check for 'Check of PMT Model'

11. Created explicit check for 'Check General Aspects' b
£ >

Figure 107: Log of VVT Export

8.6.3 Excel

PMT uses Excel for interfaces for the following purposes:
e Parameters for Instantiations

e Process Status

e Process Description (Export Only)

8.6.3.1 Parameters Interface

Parameters can be exported using the popup action on Process and
ProcessModule elements (see Figure 108).

User Manual of Process Modeling Tool Page 88
Version 1.2

v 8 Process Validas Module Test Process

Requirement [SO S0 26262
Process Module Perfnrm BAndule Tect < BACINLN FStrinne <-= [SO-AR04 4
& Artifacts Mew Child 5
{i Stake Holders Mew Sibling S
&g Bindings

[Parameters Undo Ctrl+Z

Types Redo Ctrl+Y

&

Cut

5 Copy
Paste

3 Delete

Validate

Control...

Show DOT (Graphwiz)

Export DOT Image (Graphviz)
Export VVT Model

Evaluate Variants

Project Overview

Update Project Status
Project Status Details

Infer and Set Types

Check Types

Show Parameter Statistic
Export Parameter Values To Excel

Figure 108: Start Parameter Export

The exported parameter table in Excel contains for each exported
parameter a tab into which the values can be entered as shown in Figure
109.

Parameter Type

Container

1 |Parameter Yalue
2 |main.c

3 llibc

4 |test.c

b

B
7

MODULE @

Figure 109: Parameter Values in Excel

After filling in some data (as shown in

User Manual of Process Modeling Tool Page 89
Version 1.2

Figure 109), the parameter values can be imported into PMT using the
corresponding import actions, see Figure 110. Figure 111 shows a log
from importing describing the performed changes. Note that the import
also check the types of the values match with the exported types from the
parameters.

The results of the import are new / updated Parameter Bindings (see
Figure 112) that can be used to instantiate the process as described in
Section 8.2.7.

Import Parameter Values From Excel

Figure 110: Starting Parameter Value Import From Excel

O X

Successfully created 3 new values from Parm_ProcessModule_Perform Module Test.xls

iCreated new Binding for Pararneter MODULE ”
Adding new value main.c

Adding new value lib.c

Adding new value test.c

Inferring types for 32 elements

inferring Term (150_ASIL == ASIL_C)

inferring Term test.c

Inferring Type String for non-numeric value test.c
inferring Term I1S0_ASIL

Inferring Type String for non-numeric value main.c
Inferring Type String for non-numeric value lib.c

setting type of [main.c, lib.c, test.c] to [String] A
L 4 >

Copy Tok

Figure 111: Log from Parameter Value Import

~ %® Process Validas Module Test Process

Requirement [50 150 26262
v Process Module Perform Module Test <MODULE:String> <-> [50-6.9.4.4
Process Module Specify Test
Process Module Execute Test
., Werification Module Analyze Test Results
i, Verification Module Analyze Code Coverage
w og Bindings
v o Binding MODULE := [main.c, lib.c, test.c]
w <8 List Term [main.c, lib.c, test.c]
@ Constant main.c
@ Constant lib.c
@ Constant test.c
w [@ Parameters
B Project Parameter MODULE: String

Figure 112: Resulting Parameter Binding from Parameter Value Import

User Manual of Process Modeling Tool
Version 1.2

Page 90

8.6.3.2 Process Status

The process status can be used to trac/manage the project status, see
Section 8.2.11. PMT support this by providing an Excel format Export /
Import of the status of the artifacts and ProcessModules/Verification
Modules.

The ex- and import can be started from ProcessModule (and
VerificationModule) elements as shown in Figure 113.

Import Project Status (Excel)
Export Project Status (Excel)

Figure 113: Project Status Excel Interface Actions

The resulting Excel table (that can be updated and re-imported) is shown

in Figure 114. It has rows for all artifacts and ProcessModuels with the

following information:

e Type: The type of the element (Artifact or ProcessModule /
VerificationModule).

e Name: The name of the element.

e State: The status of the elements, see Section 9.2.1 for all available
states.

e The ID of the element.

e The qualified name of the element (do not change this, since this is
used to locate the elements in the model).

e Description: A description of the element.

e Effort: a number for the estimated effort (can be hours, days or $).

e Progress: a number normal less or equal the estimated effort.

e Planned Start: A date when the work should start.

e Planned End: A date when the work should end.

Please note that PMT will not remove elements if you delete rows in your
excel sheet. This has to be done automatically.

User Manual of Process Modeling Tool
Version 1.2

Page 91

Type

Artifact

Artifact

Artifact

Artifact

Artifact

Artifact

Artifact

Artifact
ProcessModule
VerificationModule
VerificationModule
VerificationModule
ProcessModule
ProcessModule
ProcessModule
ProcessModule
ProcessModule
ProcessModule
VerificationModule

EOMOSwo~omes Wb

[

STATUS

The import shows a log file including the detected changes and warnings

MName

SuUT

Safety Case

Code Coverage Report
Summary

Test Case

Test Report
Specification

Test Specification
Perform Module Test
Analyze Code Coverage
Analyze MCDC
Analyze Test Results
Execute Test
Measure MCDC

Run Test

Specify Test
Generate Tests

Model Test Behaviour
Validate Tests

(]

State
1D

DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED
DEFINED

Qualified Name

SuUT

Safety Case

Safety Case.Code Coverage Report

Safety Case.Summary

Safety Case.Test Case

Safety Case.Test Report

Specification

Test Specification

Perform Module Test

Perform Module Test.Analyze Code Coverage

Perform Module Test.Analyze Code Coverage.Analyze MCDC
Perform Module Test.Analyze Test Results

Perform Module Test.Execute Test

Perform Module Test.Execute Test.Measure MCDC
Perform Module Test.Execute Test.Run Test

Perform Module Test.Specify Test

Perform Module Test Specify Test. Generate Tests
Perform Module Test.Specify Test.Model Test Behaviour
Perform Module Test.Specify Test.Validate Tests

4

Figure 114: Project Status Format in Excel

as depicted in Figure 115.

Description

Effort

Subject Under Test, t
Containing all relevan
The report with the s¢
ModuleTest/Artifacts!
A module test case (
The test report create
Functional Specificat
Model based test spe
All activities for perfor
The code coverage is
Analyze if MCDC is
Checks the test resu
Run the test cases a
Perform the tests anc
Executes test case &
Create a model base
Generate tests cases
Create a model for th
Tests can be validate

CcCooco oo ooooo

T

Progress

CcCooco oo ooooo

Planned Start
Planned End

Successfully imperted 2 updates from PerformMeduleTest_Status.xls

Processing 20 status lines:|

Updated 2 states, Please save your model,
Update 1 status of artifact Safety Case from DEFINED to READY

Update 2 status of artifact Code Coverage Report frorm DEFINED to DOME
Warning in row 3 invalid state UNKNWON found. Allowed states are: DEFINED, DOME,READY, IN_PROGRESS,PLAMMED. Ignoring line.
Warning in row 17: cannot find ProcessModule Perform Module Test.Execute Test.Run Another Test. Ignering

Copy Text

Figure 115: Log from Importing Project Status from Excel

8.6.3.3 Process Description Export

In order to semantically validate a process the so called MetaProcess has
to be applied, see Section 8.5.3.

The export of the process description

elements as shown in Figure 116.

Export Process Parameters (Excel)

Figure 116: Starting Export Process Parameter into Excel (ProcessModule)

is started on ProcessModule

The result is in the same format as the parameter export described in
Section 8.6.3.1, see Figure 117 for an example.

User Manual of Process Modeling Tool
Version 1.2

Page 92

Note that not only the selected Process will be exported, but also the
linked elements like requirements, compliance argumentation,.. .

— o o
=GR TS

A B C D E F G

[+
o
=
'_
i 5
[H] o
E ®
= I=

Parameter Value a S

Analyze Code Coverage |String Perform Module Test

Analyze MCDC String Analyze Code Coverage (in Perform Module Test)

Analyze Test Results |String Perform Module Test

Execute Test String Perform Module Test

Generate Tests String Specify Test (in Perform Module Test)

Measure MCDC String Execute Test (in Perform Module Test)

Model Test Behaviour |String Specify Test (in Perform Module Test)

Perform Module Test String Validas Module Test Process

Run Test String Execute Test (in Perform Module Test)

Specify Test String Perform Module Test

Validate Tests String Specify Test (in Perform Module Test)

4 COMPLIANCE PARAMETER PROCESS PROCESS_ARTIFACT REQUIREMENT | ROLE TOOL ...

Figure 117: Process Description in Parameter Value Format

The exported excel table contains the following tabs, each filled (or
empty) with the used modeling elements:

COMPLIANCE: the compliance elements relevant for the selected
process

PARAMETER: the used parameters in the model (including referenced
ones)

PROCESS: The selected process modules (and the referenced children),
but no VerificationModules

PROCESS_ARTIFACT: The artifacts in the process

REQUIREMENT: The requirements satisfied by the process

ROLE: the used StakeHolders

TOOL: the used tools

VARIANT: the used variant terms

VERIFICATION: the included verification modules

More detailed description of the parameters can be found in the
MetaProcess.pmt in the examples folder of PMT.

8.6.3.4 Development Interface Agreement

In order to cooperate in safety related process it is important to agree on
a work split. This can be done using excel tables which contain all artifacts
of the process. This table can be generated using the excel export on
Project Modules using the

User Manual of Process Modeling Tool
Version 1.2

Page 93

Export Development Interface (Excel)

Figure 118: Starting Export Development Interface Agreement (ProcessModule)

The result is an excel table with the following tables:

- Overview: describes the document status, version, author and
history

- Artifacts: The list of all artifacts with the informations from the
model

- Roles: the roles in the process

- Parameters: the used parameters

- Steps: the used process & verification modules

The table cannot be imported again into the model.
8.6.3.5 Offer

This action (see Figure 119) exports a calculation for all artifacts that have
to be delivered from the selected roles (first dialog, see Figure 120)

Export Offer (Excel + Word)

Figure 119: Starting Export of Offer (ProcessModule)

The offer selection dialog shows all roles which are responsible for
artifacts in the selected process and allows to select several roles.

7 Offer Generator: Role Selection Dialog O ot

Select the rolse to offer;

[] Hardware Gwner
[] Product Owner
[] Software Qwner
V&Y Manager
Validas

Verifier

Select All Deselect All

Figure 120: Offer Selection Dialog

The result is an excel table with a calculation for prices of all artifacts (that
have ProjectRelevant set to true and that are in the responsibility of the
selected roles.). The prices are computed based on the daily rate and the
effort (multiplied by “NumberOflnstance” in case the artifact is required

User Manual of Process Modeling Tool
Version 1.2

Page 94

for several parameter values). If no efforts are specified, the default value
of 2 is used for all artifacts that have no relation to a compliance element
for a requirement and 5 if the document is required for compliance

argumentation.

% Enter daily rate

Please enter a number

1500

Cancel

Figure 121: Daily Rate Dialog

The daily rate has to be entered (as positive number) within the next

dialog, see Figure 121

The generated calculation table cannot be imported again into the model.

F

Deliverable

FD

Artifact Variables [6-C]
CheckList
CheckResult

DepFailk [6-7]
Environment Parameters [6-C]
Features

HS| Spec (refined) [6-6]
Mitigations

Parameters

Potential Errors

SW Arch DS [6-7, 6-C]
SW Safety RS [6-6]
SWA Ana Report [6-7]

M

LA T o I T L T G TR L T TR o R T L T |

[y]

M P

Sum WP

Frice

86 123000
7500
3000
3000
7500
7500
3000
7500
3000
3000
3000
7500
7500
7500

Figure 122: Calculation Table (partly)

User Manual of Process Modeling Tool
Version 1.2

Page 95

8.6.4 Ecore Importer

PMT allows to create and use a meta model for the definition of model-
based processes, see Section 8.2.2 and 9.12.

To reduce the work for modeling tools based on Eclipse Modeling
Framework using an .ecore file, the meta model of a tool can be imported
automatically from that file into the model.

™ Resource Set

w @ platform:/resource/ProcessModeler/git/pmt-prototype/bundles/de validas.spr.pmt.examples/Documentation/ TCAModels.pmt
~ 98 Process TCA Modeling
w @ Artifacts

‘gg [T Gl E R
Mew Child »

Mew Sibling -
<< Undo Delete Ctrl+Z
Redo Ctrl+Y
of Cut
2 Copy
Paste
¥ Delete

Validate

Control...

Show DOT (Graphviz)

Export DOT Image (Graphviz)
Export VVT Model

Evaluate Variants

Project Overview

Update Project Status

Project Status Details

Infer and 5et Types

Check Types

Show Parameter Statistic

Export Parameter Values To Excel
Import Parameter Values From Excel

Import Ecore Model
Figure 123: Starting Import Ecore Model

After selecting an .ecore file the meta model is imported and a log file is
displayed as shown in Figure 124.

User Manual of Process Modeling Tool Page 96
Version 1.2

O X

Importd Meta Model inte TCA Model from EA\git\pmt-prototype\bundles\devalidas.pmtimodel\referenceModel.ecore

‘Creating new Metamodel from referenceModel: IS

importing 3 elements from package metaModel.

NEW MetaModelElement metaModel.Workaround created

importing 3 elements from package metaModel.suptertype.

NEW MetaModelElement metaModel.suptertype.Mamed created

NEW MetaModelElement metaModel.suptertype.Variantable created

NEW MetaModelElement metaModel.suptertype.Preference created
importing 17 elements from package metaModel.referenceProcess.

NEW MetaModelElement metaModel.referenceProcess.Process created
NEW MetaModelElement metaModel.referenceProcess. Tool created

NEW MetaModelElement metaModel.referenceProcess.StakeHolder created
NEW MetaModelElement metaModel.referenceProcess.Model created
NEW MetaModelElement metaModel.referenceProcess.ProcessModule created b

Figure 124: Import Log from Ecore Importer

8.7 Report Generators

PMT supports the generation of the following reports:

e Process Report: contains a detailed description of the process.

e Compliance Report: contains the compliance argumentation.

Both report generators use templates that are included in the PM tool but
can be adapted if desired.

Note: both reports contain variables that need to be updated manually
within Word by selecting the whole document (STRG+A) and updating the
variables (F9).

8.7.1 Process Report

The process report can be generated from any ProcessModule and Process
by starting the action “Word Generators -> Process Report” as shown in
Figure 125.

Word Generators > W Compliance Report
Cormpare With -] Compliance Report
Load Rescurce... ¥ Process iy

Process Report

Refresh I

Figure 125: Starting Process Report Generation

The generated report has the structure and title pages as shown in Figure
126.

User Manual of Process Modeling Tool
Version 1.2

Page 97

1 Scope of this Document
I 2 Process Motation
I- 3 Parameters of Validas Meta Process
4 Roles in Validas Meta Process
5 Artifacts in Validas Meta Process
4 & Process Validas Meta Process
4 6.1 ProcessModule Define Process
I 6.1.1 ProcessModule Create Process Model
6.1.2 ProcessModule Generate Report
£.1.3 ProcessModule Plan Process Modeling
I 6.1.4 ProcessModule Validate Process
7 Tools in Validas Meta Process
3 Glossary
9 References

Process Report
for
Validas Meta Process

Validas Q

Template 0.7 / Document 0.3

Safety Level:

ASILD

Date:

2019-05-01

Status

Generic / Adapted / Presented / Generated / Reviewed / Final

Author:

Dr. Oscar Slotosch

File:

PProcess.docm

Size:

108 Pages

Figure 126: Structure and Title of Process Report

8.7.2 Compliance Report

The compliance report can be generated from any ProcessModule and
Process by starting the action "Word Generators -> Compliance Report” as

shown in Figure 127.

Word Generators

Cormpare With
Load Resaurce...

Refresh

> B Com pliance Report
» Compliance Report
%’ Process Report

Process Report

r

Figure 127: Starting Compliance Report Generation

The generated report has the structure and title pages as shown in Figure

128.

User Manual of Process Modeling Tool
Version 1.2

Page 98

1 Scope of this Document
2 Compliance Method
I 3 Parameters of Define Process "
4 Main Requirements (Claims) for Define Process Compllance Report
4 5 Requirements for Define Process for
4 5.1 Requirement: Process Description Requirements [PD] Deﬁne ProceSS
5.1.1 Requirernent: Artifacts and Documents [PD-Docs]
5.1.2 Reguirernent Open Issues [PD-lssues]

5.1.3 Reguirernent Parameters and Instances [PD-Param]

Validas Qualification Processes

5.1.4 Requirement: Process and Verification Steps [PD-Proc]

5.1.5 Requirement: Requirements and Compliances [PD-Req]

5.1.6 Requirement: Roles and Responsibilities [PD-Roles]

5.1.7 Requirement: Tool Support [PD-Tools]

5.1.8 Reguirernent: Variants and Tailoring [PD-Variant]
I 6 V&V Checks for Define Process

- . . S e
4 T Compliance for Define Process R e oA e)

4 7.1 Compliance with Process Description Requirements [PD]

7.1.1 Compliance with Artifacts and Documents [PD-Docs]

7.1.2 Compliance with Open lssues [PD-lssues] —— Template 0.7 / Document 0.3
7.1.3 Compliance with Parameters and Instances [PD-Param]
Maximal ASIL D
7.1.4 Compliance with Process and Verification Steps [PD-Proc] Safety Level: -
7.1.5 Compliance with Requirements and Compliances [PD-Req] Date: 20050501
7.1.6 Compliance with Roles and Responsibilities [PD-Roles] Status: Generic / Generated / Reviewed / Final
7.1.7 Compliance with Tool Support [PD-Tools] Aiithor T an—
7.1.8 Compliance with Variants and Tailoring [PD-Variant]
File: CPM.docm
& Glossary
9 References Size: 55 Pages

Figure 128: Structure and Title of Compliance Report

8.8 Preferences

PMT has the following preferences that can be adjusted (see Figure 129):

e General Preferences: Define the appearance of PMT property editors:
Filtering Preferences: Configure the filtering mechanism, see Section
8.9.

e Validation Preferences: Select the syntactic validation rules see Section
8.5.1.

e Projection Preferences: Configure the model projection, see Section
7.5.

Qualified names reflect the tree hierarchy by concatenating all name
segments using the configured separation character.

Qualified names can be very valuable in bigger models to find the right
element in long element lists of “selection dialogs”, where you want to
select an element, for example a process that creates an artifact.

Qualified names can also be used in the property dialogs, if configured.

User Manual of Process Modeling Tool
Version 1.2

Page 99

% Preferences O >

type filter text Process Modeling Tool =T v w
EMF C
nmpare. Process Modeling Tool

+ Procesz Modeling Tool - . . '

Filtering [] Use qualified names in selection dialogs

Validation [] Use qualified names for referenced elements
w Projection Separate segments with: |/

General

Figure 129: PMT Preference Window

8.9 Filter Scoping

In order to reduce the number of displayed elements in the dialogs scopes
can be used and activated.

A scope is a process module and all contained elements. Scopes are
stored in the Process element (root container) in order to make them part
of the model.

The filter scopes have to be activated within the preference dialog by
selecting “Active Process Modules” in the “Active Scope” dialog as shown
in Figure 130

% Preferences o x
ftyp : Filtering v Ty
EMF Compare . -
p Modeling Teol filt
~ Process Modeling Tool R
L ~ Active scope
Filtering)
Validation [-] Active Process Modules
Projection Select All | | Deselect All

Export.. | Import.. | Restore Defaults Apply

Apply and Close Cancel

Figure 130: Activation of Filter Scoping
Once activated the Scopes can be selected as shown in Figure 131.

User Manual of Process Modeling Tool Page 100
Version 1.2

w @ platform:/resource/ProcessModeler/git/pmt- prototype/bundles/de.validas.spm.pmt.examples/Documentation,/Reuselibrary.pmt

w % Process Reuse

Requirernent 150 S0 26262 Filter Scope

w Process Module Validas Process Library
v Process Module V&V
Process Module Plan

Process Module Software QKit <-> &
&2 Process Module Tool QKit <-> 811

Process Module Perform
Process Module Document
E Parameters
Types
v Process Module Library QKit <-» 2-12
== EQ Term (Project == LibraryCKit)
Process Module Build Library GKit
v Process Module Toel QKit <-= 3-11
== EQ Term (Project == ToolQKit)
Process Module Build Tool QKit
v Process Module Software QKit <-> &
== EQ Term (Project == SWOKit)
Process Module Build SW QKit

Figure 131: Definition of Filter Scopes

Figure 132 shows the result in the selection dialog. Only the filtered
elements are shown (and the top-level process modules).

“7 Select Elements O
Search Model Element

Enter model element name prefix or pattern (e.g. *Trun?)
Search |Model Element

&2 Process Module Library QKit <-> 8-12

&2 Process Module Software QKit <-> 6

&2 Process Module Software QKit <-> 6/Process Module Build 5W QKit
Process Module Tool QKit <-> 8-11

EProcess Module Tool QKit <-> 8-11/Process Module Build Tool QKit |

Process Module Validas Process Library

Figure 132: Application of Filter Scopes

User Manual of Process Modeling Tool
Version 1.2

Page 101

%7 Select Elements

Search Model Element

Enter model element name prefix or pattern (e.g. *Trun?)

Search ||

&% Process Module Library QKit <-> 8-12

&% Process Module Library QKit <-> 8-12/Process Module Build Library QKit
Process Module Software QKit <-> &

Process Module Software QKit <-> 6/Process Module Build SW QKit
Process Module Tool QKit <-> 8-11

Process Module Tool QKit <-> 2-11/Process Module Build Tool QKit

&% Process Module Validas Process Library

&2 Process Module Validas Process Library /Process Module V&V

&% Process Module Validas Process Library /Process Module V&V /Process Module Document
&2 Process Module Validas Process Library /Process Module V&V /Process Module Perfform
&2 Process Module Validas Process Library /Process Module V&V /Pracess Module Plan

Finish

Cancel

Figure 133: Application without Filter Scopes

User Manual of Process Modeling Tool

Version 1.2

Page 102

9 Meta Model of PMT

This chapter describes the complete process model and the elements
together with modeling rules and the visualization in the browser.

A coarse overview of the model (“powerpoint level”) is depicted in Figure
134. It shows the main structures but omits the details that will be
described in the remainder of this section.

StakeHolder

Parameter

References

Binding

Model

VerifcationModule

Figure 134: Metamodel - Powerpoint Level

The PMT is an Eclipse-based RCP application. The core of the application is
the meta-model. Section 9.1 describes the basic principles. The model has
common interface, see Section 9.3 and follows some scoping rules (see
Section 9.4).

The model is described in semantic groups (class diagrams) that focus on
semantic aspects, e.qg. tailoring, tools,.. The class diagrams focus on those
aspects. However the descriptions of the classes contain all aspects such
that it can be used as reference.

User Manual of Process Modeling Tool
Version 1.2

Page 103

9.1 Syntax of Meta Model

The meta model describes the structure of the model. It defines the
syntax, i.e. the form of the model. The following chapters describe the
interpretation and semantics of the model.

The meta model consists of the following elements:

e Classes with names

e Attributes (of classes) with names and types

e Associations to other classes with names and cardinalities

The meta model describes the possible models as follows:

e Every element of the model has to be of a given type which is
represented as class in the meta model

e Every element in the model has properties that can be changed by the
user. Properties are either attributes, e.g. a name or relations
(“associations”) or “compositions” to other elements in the model.

e Attributes have types, e.g. String, Integer, Boolean to constraint the
possible elements that can be modeled.

e Associations are links to other elements in the model of a given type.
Associations have cardinalities to specify the number of associated
elements. Used cardinalities are in PMT

o 0..1: zero or one occurrence
o 0..*: zero or arbitrary

e Compositions are like associations, except that the related elements
are “contained” in the element, i.e. are deleted when the element is
deleted.

e Containers: can contain the elements, i.e. if an element has to be
created this can only be done within an appropriate container.

The meta model is implemented within an ecore file in PMT and described
using class diagrams. Classes are depicted as boxes with their names on
top and the attributes and their types after a colon below the line.
Relations are depicted as arrows. Their names and cardinalities are
depicted at the end of the outgoing arrows. Some arrows are bi-directed,
denoting that the relation between the objects is “inverse”, i.e. every
object A has relation to B and B has inverse relation to A. The smart thing
is that it suffices to specify one of both associations and the opposite is
set automatically from the tool. Compositions are marked with black
diamonds on the container.

Figure 135 shows an example: It shows the classes “Process”, “Tool” and
“ProcessModule”, their attributes and relations. There is a composition

User Manual of Process Modeling Tool
Version 1.2

Page 104

from Process to Tool called “tools”, denoting that the process contains
Tool elements and that they are called tools. The element “Tool” has two
attributes of type String: PreliminaryClassification and
ClassificationExplanation, those can be used to describe a preliminary
classification, e.g. “critical” or “uncritical” and a textual explanation.
Furthermore the example specifies a bi-directional association between
Tools and ProcessModules denoting that tools can be used in process
modules and process modules can be supported by tools. All cardinalities
are 0..*.

| H Process E‘]

| |

10..%] tocls

H Tool El]

| H erocessModule [.| = PreliminaryClassification : EString

{ [0..*] prozessModules [0.*]tocls | o ClassificationExplanation @ EString

Figure 135: Meta Model: Class Diagram Example

The described meta model results into the following PMT models:

The compositions are structure in the tree browser. In Figure 136 it can be
seen that the selected element “Test Tool” is contained in the process
“Validas Module Test Process” (via the group Tools) and that it has
(despite the general properties like Name, Description,...) the two
specified attributes: “Preliminary Classification” and "“Classification
Explanation”.

Furthermore the “Test Tool” element has an association to the Process
Module “Execute Test”.

Note that the class diagram might not show all properties to keep it
simple (however the specifications in this section are complete), therefore
there are also other properties of the tool that can be edited. For example
there is also a “Tool Owner” that can be set to at most one StakeHolder
(Cardinality is 0..1).

User Manual of Process Modeling Tool Page 105
Version 1.2

% Process Modeling Tool - O X
File Edit PMT Editor Window Help
& ModuleTest.pmt 52 | 22 = 0 ||[C] Properties & | 5= Outline) = - = 08
r[\;, Resource Set BASIC s
~ [&) platform:/resource/ProcessModeler/Users/oscar/Desktop/

T S5 Process Valides Module Test Process | (e [[Test Tool |

[E/ Requirement IS0 IS0 26262 Description | Any module test tool |
Process Module Perform Module Test <-> [50-6.9

v Tools Tool Owner Not Set = | e
§i Tool Compiler
§i Tool Test Tool @@ | (ep| |Gy
o Artacts
 Stake Holders Process Modules
«g Bindings PrucassMudu\EB(ecuteTEst
[Parameters
Types
EXTENDED S
D Deactivated O
Long Description
Comment
Preliminary Classification Critical
No easy way to detect wrong results currenthy
Classification Explanation
==

Figure 136: Model: PMT Structure Example

The meta model specifies the allowed models and their structures. Further
information about these concepts can be found in the documentation of
the used Eclipse Modeling Framework (EMF).

9.2 Enumerations

Some attributes have a finite set of values and are defined using
enumerations. Those are specified in this section.

9.2.1 ProcessStatus

The process status in PMT consists of the following values:

e DEFINED: the task/artifact is defined, but not ready to start working.

e PLANNED: The task/artifact is planned, i.e. has resources and dates
assigned.

e READY: the task/artifact is ready to start, i.e. its inputs are in the state
DONE (Theoretically it would also be possible to work on inputs of
status “IN_PROGRESS”, but this is not useful for a formal calculus).

e IN_PROGRESS: the task/artifact has started but not ended.

¢ DONE: the task/artifact is done.

Note that the project status is defined for ProcessModules and Artifacts.

User Manual of Process Modeling Tool Page 106
Version 1.2

9.2.2 SafetyLevel

The SafetylLevel specifies the maximal safety level of the process. It can
have the following values:
ASIL_A
ASIL_B
ASIL_C
ASIL_D

SIL_1

SIL_2

SIL_3

SIL_4

TQL_5

TQL_4

TQL_3

TQL_2

TQL_1

0O O 0O O 0O O 0o o O O o o

9.2.3 Cardinality

The Cardinality is used to specify the number (“cardinality”) of the
elements that can be related to the element by these associations. Main
cases in EMF are “one” or "many” associations. Cardinality can have the
following values:

o CARDINALITY_O_to_1: Only one element can be present or
not.

o CARDINALITY_1: Exact one element has to be present. Many
tools do not enforce this condition, so it is rarely used.
CARDINALITY_O_to_N: Many elements can be present or not.
CARDINALITY_O_to_N: Many elements can be present but at
least one has to be present. Many tools do not enforce this
condition, so it is rarely used.

Also other cardinalities can be specified, e.g. “2” in UML, but for simplicity
we decided to use a (finite) enumeration for cardinalities.

9.3 General Interfaces

In PMT there are two main interfaces that harmonize modeling, Figure
137: “Named” for all elements with names and “Variantable” for all

User Manual of Process Modeling Tool
Version 1.2

Page 107

elements that can have tailoring using variant terms and graphical
layouts®.

Figure 137 shows the interfaces, together with two example elements
(Process and ProcessModule) and their relations. Note that “Variantable” is
a specialization of “Named”, i.e. every element that can have
variants/layouts is always "Named” with Name, Description,..

The “Process” class implements the Interface "Named”, hence it inherits
all its attributes. The “ProcessModule” class implements “Variantable”,
hence it inherits all attributes from “Variantable” AND “"Named”.

EQ Named Ed

= name : EString
o description @ EString
o ID : EString
o comment : EString
o longDescription : EString
o deactivated : EBoolean = false
o projectRelevant : EBoolean = True
E] o projectComment : EString
‘ & historyRecordEntries ; HistoryRecord

| H Process

| o MaximalSafetylevel @ Safetylevel = ASIL | T
Il

Fy] 2]
=
|

0..%] processhodules | EE Voriantable]

[0..%] afterProcessModules [ProcessModule 0@ efiningProces

o LayoutPriority : Int
Modul o+ A
oau %E_‘; Variants : BoolTerm | [0."] LayoutAfter

&2 ContainedCompliances : Compliance
[0..*] beforeProcesshodules 1\ [y

[0..%] subProcessModules [0..%] SubProcessModuleReferences

[0..*] LayoutBefore

10..1] RefinedProcesshModule

Figure 137: Interfaces in PMT (with examples)

9.3.1 Named

The interface “"Named” is a superclass of all named elements (all PMT
elements except MetaModel, Binding and Term-Elements have names),
allowing them to have the following attributes:

e Attributes:
o Name: String: the name of the element
o Description: String: a short description of the element
o LongDescription: String: a multi-line description of the
element
o ID: String: a unique identified for the element

6 The interfaces |Verifies and IVerifier (in the implementation) are depreciated and might be
removed in future version of PMT. Therefore they are not described here further.

User Manual of Process Modeling Tool
Version 1.2

Page 108

Comment: String: a comment explain the element description
Deactivated: Boolean: if specified this element will be ignored
projectRelevant: Boolean (Default=true): can be used to
specify project relevance, e.g. for exporting project specific
documents like DIA or offers.

o projectComment: String: can be used to explain project
specific things, especially if things are not project relevant.

9.3.2 Variantable -> Named

The interface “Variantable” is a superclass of all elements that can have
variants (see Section 8.2.6) and graphical layout (see Section 8.2.9),
allowing them to have the following attributes (in addition to all properties
inherited from the superclass Named):

Superclass: Named, see Section 9.3.1.

Subclasses:-

e Instances: The following elements are “variantable”

o ProcessModule (and VerificationModule)

o Artifact (and Model)

o StakeHolder

o Criterion

o Tool

e Attribute:

o LayoutPriority: int: The priority of this element for layout
computation: The higher the priority value, the higher will be the
priority, i.e. the elements are sorted “descending”, see Section
8.2.9 for more details about layout.

e Composition:

o Variants: BoolTerm [0..*]: Terms under which the element is
activated. I.e. if one of the contained terms evaluates to true the
element is present ("OR-semantic”)

e Associations:

o LayoutBefore: Variantable [0..*]: The elements that shall be
layouted before this element (by drawing invisible lines from
them)

o LayoutAfter: Variantable [0..*]: The elements that shall be
layouted after this element (by drawing invisible lines to them)

User Manual of Process Modeling Tool
Version 1.2

Page 109

9.3.3 Verification Interface

The verification interface has been introduced to implement verification
relations in a generic way and to make PMT easily extensible for future
verification constructs. Currently it is however only used with the
Verification Module and the artifacts that are verified. The verification
interface (see Figure 138) consists of two abstract classes:

e IVerifier: the verifier

e IVerifiedBy: the verified element

| H Werified IE|| | 1 WVerifier IE||

Figure 138: Verification Interface

The interface “IVerified” indicates that the implementing element is
verified. Usually artifacts are verified.
e Superclass: -
Instances: The following elements are “IVerified”
o ProcessModule (and VerificationModule)
o Artifact (and Model)
o Requirement
Attribute: -
Composition:
Associations:
o verifiedBy: IVerifier [0..*]: The verifier (typically verification
modules) that verify the element.

[0..%] verifies [0,,%] verifiedBy

The interface “IVerifier” indicates that the implementing element verifies
something. Usually VerificationModules are verifiers.

e Superclass: -
e Instances: The following elements are “IVerifier”
o ProcessModule (and VerificationModule)
e Attribute: -
e Composition:
e Associations:
o verifies: IVerifiedBy [0..*]: The verifier (typically verification
modules) that verify the element.

User Manual of Process Modeling Tool
Version 1.2

Page 110

9.4 Scoping, Hierarchy and Reuse

The PMT model is structured as a tree. Most properties are specified
“locally” in the elements that have them, for example the name of the
element or its description.

Some attributes however are “inherited” into the contained elements, for
example if an element is deactivated, it automatically deactivates all its
children, even those elements are not specified to be deactivated.

The same holds for the owner of a process module or artifact. If the
process module has no owner specified it is associated to the owner of the
containing process module. This greatly simplifies specification of
responsibilities.

The same holds for variables & parameters. If a variable/parameter shall
be evaluated (for example to determine if a variant is true/false), PMT
searches for its value first locally in the using element. If it is not found
(bound) there the value is searched in the containing element until the
value is found or the root element (Container) has been searched for it.
Note that only non-deactivated elements are considered (also in the
search for variables).

Most elements (Types, Stakeholder, Artifacts and ProcessModules) can be
contained in the global root container (“Process”) or in any other process.
For modularity it is better not to store them globally, but local in the
process where the elements belong to.

Since the model is a tree structure it is hard to re-use elements (without
copy & pasting them, which would make them hard to modify).Therefore
we have added so called References to the meta model that support the
reuse of hierarchic elements without copying it. Technically they are
implemented as associations, semantically they are treated like
compositions in the generated artifacts (but currently not within the tree
browser?).

For example there may be many documents, e.g. TQR and a TSM that
each has a table of contents consisting of references to sections. Instead
of modeling the table of contents twice, we can use references to it in the
modeled documents and for sake of reuse put the table of contents into
something that we model as template-library.

In the Artifact example the name of the reference s
“SubArtifactReferences”. It can be specified as shown in Figure 139 by
adding the “Table Of Contents” Artifact from the “Validas Library” Process

7 This might change in future, once the feature request #XX is implemented.

User Manual of Process Modeling Tool
Version 1.2

Page 111

as “SubArtifactReference” to the artifact "TQR”, such that the TQR has
then not only three children (as shown in the tree browser) but four
(including the table of contents) as shown in the Process Module View.

e "References.pmt &3 = O || Properties | 5= Outline |51, Process Module View &3

i) Resource Set

w4l platform:/resource/ProcessModeler/git/pmt-prototyp @
v %® Process References - . i

v Process Medule Validas Library
v @ Artifacts) A rs
~ & Artifact Table Of Contents ’

C A ‘T
f) Artifact Header
f) Artifact References
v @ Artifacts

~ & Artifact TOR
f) Artifact Test Results

| e |
@ Artifact Test Analysis
f) Artifact Summary Sub Artifact References

v & Artifact TSM € Artifact Table OF Contents
f) Artifact Tool Dependent

€ Artifact Known Bugs
Figure 139: References in Artifacts

The same concept of references can be used with process modules, see
Figure 140. Also parameters can be referenced from other modules.
In requirements there are also references, but this is called (due to the

nature of safety standards that frequently use these pointers)
“"RequiredRequirements”.

i References.pmt 23 = B | [Properties | 5= Outline [}, Process Module View 53

1T Resource Set

v ¢l platform:/resource/ProcessModeler/git/pmt-prototype/t g Create TQ R p
~ %% Process References
~ &8 Process Module Validas Library
Process Module Create TOC
< Artifacts Start
~ &2 Process Module Create TOR
Process Module Create Test Results Modele
Process Module Analyze Tests
Process Madule Summarize Results

v & Arifacts [Create TOC] [Create Test Resultsj [Analyze Testsj (Summarize Resultsj
v & Artifact TOR

&, Artifact Test Results
@ Artifact Test Analysis
@ Artifact Summary
& Artifact TSM
w i Stake Holders .

7
 Stake Holder Modeler

Figure 140: References in Process Modules

9.5 Types

PMT has a static type system. Terms and types build the basis for PMT
models and their automated evaluation, see Section 8.1. In this section all
modeling elements are described that can be used to express Variants,
Conditions and values for Parameters:

e Types: Define the basis of the PMT terms.

e Terms: Define the allowed terms that can be used within PMT.

e Bindings: Bind Values to Parameters.

Parameters are defined in Section 9.8.

User Manual of Process Modeling Tool

Page 112
Version 1.2

H process (2] [0.%] Types
- - Ed
E Tyoe [0..1] BaseType
H ProcessModule (]| 0.7 ypes
] T]
= =
| H EnumType @] H Listhpe [

l |

[]

0..*] EnumValues

| H Enumvalue El]
I |

Figure 141: Meta-Model for all Types

Types can be defined in “Process” and “ProcessModule” elements, see
Section 8.1. Figure 141 gives an overview on the possible definitions of
types.

9.5.1 Type ->Named

The type describes the set of possible values that a Term with that type
can have, e.g. a Boolean variable can have the values of type Bool (True
and False).

w7

l,:',_:_; Parameters : Parameter ‘

Figure 142: Meta-Model of Type

Type implements Named and in addition it contains the following
properties (see Figure 142):
e Superclass: "Named”, see Section 9.3.1.
e SubClasses: EnumType and ListType
e Container: The following elements can contain Types
o Process
o ProcessModule (and VerificationModule)
e Attributes: No additional attributes for Types.
e Associations:
o Parameters: The parameters that have this type.
e Compositions: No compositions of Type.

User Manual of Process Modeling Tool
Version 1.2

Page 113

9.5.2 EnumType ->Type

EnumType is the type of elements that can have only values from an
enumeration that defines the Enumerated Type. The enumerated values
(“EnumValue” are contained in the definition of the EnumType).

| B Tvpe E]

{,:',_:; Parameters : Parameter ‘

i

| H EnumType E‘]
|

I [0..%] Enumalues

| H Enumvalue E‘]

l |

Figure 143: Meta-Model of EnumType with EnumValues

EnumType subclasses Type and in addition it contains the following
properties (see Figure 143):
e Superclass: “Type”, see Section 9.5.1.
e Container: The following elements can contain Types
o Process
o ProcessModule (and VerificationModule)
Attributes: -
Associations: -
Compositions:
o EnumValue: the enumerated values of the definition.
In contrast to classical programming languages there are no textual
definitions of enumerated types (as in Java) that can be used in PMT yet.

95.3 EnumValue -> Named

EnumValue represents a single enumerated value of an EnumType.
EnumValues are contained in the definition of their types (EnumType)

User Manual of Process Modeling Tool
Version 1.2

Page 114

H Tpe E‘]

{,:',_:_; Parameters : Parameter ‘

i

| H EnumType E‘]

l |

I [0..%] Enumalues

| H Enumvalue E‘]

l |

Figure 144: Meta-Model of EnumValue

EnumValue subclasses Named and in addition it contains the following
properties (see Figure 144):
e Superclass: "Named”, see Section 9.3.1.
e Container: The following element can contain EnumValues:
o EnumType
e Attributes: No additional attributes for EnumValues.
e Associations: No additional associations for EnumValues.
e Compositions: No additional compositions for EnumValues.

9.5.4 ListType -> Type

ListType is the type of lists over values. The contained values in the list
have all the same “base type”. List terms can be constructed using the
ListTerm constructor.

| Bwee]
l.:',_:_'; Parameters : F'ar-ameter|

[0..1] BaspType
H Listhpe IEl]

| |

Figure 145: Meta-Model of ListType with Base Type

ListType subclasses Type and in addition it contains the following
properties (see Figure 145):
e Superclass: “"Type”, see Section 9.5.1.

User Manual of Process Modeling Tool
Version 1.2

Page 115

Container: The following elements can contain ListTypes:
o Process
o ProcessModule (and VerificationModule)
Attributes: -
Associations:
o BaseType: Type [0..1]: The base type of the list, e.g. String from
ListOfString.
e Compositions: -
In contrast to classical programming languages there are no textual
definitions of list types (as in Java) that can be used in PMT yet.

9.6 Terms

Terms describe conditions and values in the PMT model. Boolean terms
can be expressed for automated tailorings in the process model. Basically
Terms are built, as usual in lambda calculus over the following elements
that are described within this section:

e Constants (and enumerated values)

e Operators, e.g. &&,||,==

e Variables, modeled as Parameters described in Section 9.8.

In order to maintain the consistency of the model, we cannot add
constants and variables several times into terms. Otherwise we would
have duplicated constants denoting the same terms. Therefore we added
references to parameters and enumeration values to the term model.
Constants are always different, when evaluating them, see Section 8.1.
Currently we do not see the need for arithmetic operators within process
modeling, therefore we have concentrated mainly on the Boolean terms.

The model of terms is depicted in Figure 146.

User Manual of Process Modeling Tool
Version 1.2

Page 116

Hipee @ | % porameter [

L T amee [

[0..1] Parameter
(2]

H enumType & 0.1] Type

[] Herm &

[0..%] Terms “V [0..%] Terms
7] il Il
o)

[0..%] Parameters

[
[

[0..*] Enum\alues

H Enumvalue It g EnumvalueRef |E|| | H constant IE‘| | B ustTerm IE‘| | B B‘3‘3|'|'E"""E|| | B paramref IE‘|
[0..1] EnumValue | [=value:esting | | | | |
7 7 7 T 7
| | = = | = = | = |

[QInListE‘] [H earemd [QNOTI’ermE‘][QORTermE‘] [QANDTemE‘]
[[1L I] I

Figure 146: Meta-Model of all Terms

96.1 Term

The class Term is an abstract class for all different terms. Every term can
have a Type describing its allowed values.

H Term IE||

0.1] Tpe |

Figure 147: Meta-Model of Term

Term has no Superclass for efficiency reasons (to keep terms small) (see
Figure 147):
e Superclass: -
e SubClasses
EnumValueRef: References to EnumValues.
Constant: Constant value, e.g. 1 or True.
ListTerm: a list term, with term arguments (of the same type).
BoolTerm: Boolean terms with term arguments (of boolean
type).
o ParamRef: References to a Parameter.
e Container: The following elements can contain Terms
o Variantable elements:
» ProcessModule (and VerificationModule)
= Artifact (and Model)
» StakeHolder
» Criterion
* Tool

(@]

o

o

User Manual of Process Modeling Tool Page 117
Version 1.2

Binding: contains the bound value (Term)

ListTerm
BoolTerms:
= ORTerm
= ANDTerm
» EQTerm
= NOTTerm
= InList

e Attributes: -
e Associations:

o Type: Type [0..1]: the type of a Term
e Compositions: -

9.6.2 EnumValueRef -> Term

An EnumValueRef element is a constant term referring to an
enumerated value (EnumValue, see Section 9.5.3).

| H Enumvalue El] H EnumValueRef E‘]

l | [0..1] Enumialue |

Figure 148: Meta-Model of EnumValueRef

EnumValueRef is a Term allowing to use enumerated values within terms
(see Figure 148):
e Superclass: Term, see Section 9.6.1.
e SubClasses: -
e Attributes: -
e Associations:
o EnumValue: EnumValue [0..1]: the referred EnumValue.
e Compositions: -
Note for efficiency reasons the relation between EnumValueRef and
EnumValue is uni-directional, i.e. the EnumValue does not know which
references to it exists.

9.6.3 Constant -> Term

A Constant element is a constant term with a defined and unchangeable
value.

| H Constant El]
l o Value : EString |

Figure 149: Meta-Model of Constant

User Manual of Process Modeling Tool
Version 1.2

Page 118

Constant terms are used to evaluate terms, see Section 8.1.
e Superclass: Term, see Section 9.6.1.
e SubClasses: -
e Containers: see Term in Section 9.6.1.
e Attributes:
o Value: String: contains the value of the constant, e.g “1”, or
“FALSE”".
e Associations: -
e Compositions: -

Note that we do not distinguish between different types of constants, e.g.
Boolean Constants, Integer Constants,... This is expressed by the assigned
Type, which is inherited from the super-class Term.

9.6.4 ListTerm ->Term

A ListTerm element is a Term constructor for building lists (comparable to
“[.17) that takes a list of term arguments and creates a list of it.

| H Term) [0..%] Terms H ListTerm E‘]

l = Type: Type l |

T & |

Figure 150: Meta-Model of ListTerm

ListTerm is a Term allowing to use enumerated values within terms (see
Figure 148):
e Superclass: Term, see Section 9.6.1.
e SubClasses: -
e Containers: see Term in Section 9.6.1.
e Attributes: -
e Associations: -
e Compositions:
o Terms: Term [0..*]: List of arguments/elements in the list.

9.6.5 BoolTerm ->Term

A BoolTerm element is a Term constructor for building Boolean terms
(comparable to operators like &&, ||, ==,..) that takes a list of term
arguments and creates Boolean expressions of them, for examples “"TRUE
&& X”.

User Manual of Process Modeling Tool
Version 1.2

Page 119

Q Term E :l:l.."’] Terms ‘I E BoolTerm E]

= Type: Type l |
T

o |
=1

Figure 151: Meta-Model of BoolTerm

BoolTerm is a Term with a boolean result that can be used in conditions
(see Figure 151):
Superclass: Term, see Section 9.6.1.
SubClasses:

o InList: checks if an element is in a list.

o ANDTerm: is true if both arguments are true.

o ORTerm: is true if one argument is true.

o NOTTerm: is true if the argument is false.

o EQTerm: is true if the terms are equal.
e Containers: see Term in Section 9.6.1
e Attributes: -
e Associations: -
e Compositions:

o Terms: Term [0..*]: List of arguments of the BoolTerm.

9.6.6 ParamRef ->Term

A ParamRef element is a constant term referring to a parameter
(Parameter, see Section 9.8).

| E ParamPef [7] EQ Parameter Iz‘|

l =i [0..1] Parameter .| =+ Tipe : Type
: : = Binding : Binding

Figure 152: Meta-Model of EnumValueRef

ParamRef is a Term allowing to use parameters values within terms (see
Figure 152):
e Superclass: Term, see Section 9.6.1.
e SubClasses: -
e Containers: see Term in Section 9.6.1.
e Attributes: -
e Associations:
o Parameter: Parameter [0..1]: the referred Parameter.
e Compositions: -

User Manual of Process Modeling Tool
Version 1.2

Page 120

9.6.7 InList ->BoolTerm

An InList element is a boolean term for checking if an element is in a list
of elements. Of course the types have to be compliant, i.e. a String can
only be in a list of Strings.

=] Bc:-c-ITermE‘|
l |

Figure 153: Meta-Model of InList

InList is a special boolean term (see Figure 153) with the following
properties:

e Superclass: BoolTerm, see Section 9.6.5.

e SubClasses: -

e Containers: see Term in Section 9.6.1.

e Attributes: -

e Associations: -

e Compositions: -

9.6.8 ORTerm ->BoolTerm

I A\

An ORTerm element is a boolean term for expressing a logical “or”

operation, e.g. A || B.

| H Booferm &
l |

H orTerm [
)

Figure 154: Meta-Model of ORTerm

ORTerm is a special boolean term (see Figure 154) with the following
properties:

e Superclass: BoolTerm, see Section 9.6.5.

e SubClasses: -

e Containers: see Term in Section 9.6.1.

e Attributes: -

e Associations: -

e Compositions: -

User Manual of Process Modeling Tool
Version 1.2

Page 121

9.6.9 ANDTerm ->BoolTerm

An ANDTerm element is a boolean term for expressing a logical “and”

operation, e.g. A && B.
H soclferm &

Figure 155: Meta-Model of ANDTerm

ANDTerm is a special boolean term (see Figure 155) with the following
properties:

e Superclass: BoolTerm, see Section 9.6.5.

e SubClasses: -

e Containers: see Term in Section 9.6.1.

e Attributes: -

e Associations: -

e Compositions: -

9.6.10 NOTTerm -> BoolTerm

An NOTTerm element is a boolean term for expressing a logical negation,

for example 'A.
| H soolferm &

i

| H NOTTerm E‘]
|

Figure 156: Meta-Model of NOTTerm

NOTTerm is a special boolean term (see Figure 155) with the following
properties:

e Superclass: BoolTerm, see Section 9.6.5.

e SubClasses: -

e Containers: see Term in Section 9.6.1.

e Attributes: -

e Associations: -

e Compositions: -

User Manual of Process Modeling Tool
Version 1.2

Page 122

9.6.11 EQTerm ->BoolTerm

An EQTerm element is a boolean term for expressing equality, for example

A==B.
H Boolferm &
l |

|
Figure 157: Meta-Model of EQTerm

EQTerm is a special boolean term (see Figure 155) with the following
properties:

e Superclass: BoolTerm, see Section 9.6.5.

e SubClasses: -

e Containers: see Term in Section 9.6.1.

e Attributes: -

e Associations: -

e Compositions: -

9.7 Bindings

Bindings allow to bind variables in terms to values. Variables in terms are
parameters of the process. Bindings contain a Term that is used for the
bound variables. Bindings can be declared locally (within ProcessModules),
or globally with Process elements.

| H Process E‘] | H FrocessModL@]

| | |

[0..%] EindingsI I:ﬂ..*]bindings

| H Binding & %5 Parameter [El

I [0..1] Walue

| H Term E‘]

l |

Figure 158: Meta-Model of Bindings

[0..%] eratorParameters

[0..¥] Binding [0..1] Parameter

[0..1] ValueFromListParameter

Binding is a modeling (see Figure 158) with the following properties:
e Superclass:

User Manual of Process Modeling Tool Page 123
Version 1.2

e SubClasses: -
e Container: The following elements can contain Bindings:
o Process
o ProcessModule (and VerificationModule)
e Attributes: -
e Associations: -
o Parameter: Parameter [0..1]: The parameter to which the value
is bound.
e Compositions:
o Value: Term [0..1]: the term to which the Parameter is bound
(after evaluating it), see Section 8.1.
Note that the search for parameter bindings is not done using the
association in the model, but according to the scope in which the term is
evaluated. So if the parameter X is evaluated in a process P, than the
Bindings of the process P are checked if they bind the parameter X. If not
the parents of P,.. until the global bindings in Process are considered.

9.8 Parameters

Parameters can be used to tailor and instantiate processes, see Sections
8.2.6 and 8.2.7. A parameter of a process is something that can change
its value and have impact of the process, for example the selected safety
standard or the name of a tool.

There are different kinds of parameters, that can be used to express

different intentions of the parameter:

e Process Parameter: A parameter that impacts the process (before
staring the process), e.g. the relevant safety standard, or the type of
the qualified object (Tool / Library / Software).

e Planning Parameter: A parameter used for planning the projects &
efforts, e.g. the number of tools or lines of code.

e Project Parameter: A parameter that is determined during the project,
e.g. the name of the modeled feature or tool.

e Process Variable: a parameter that impacts the process that is
determined within the project, e.g. the criticality of a tool. This is
somehow a combination of ProcessParameter and a project parameter.
ProcessVariables can be used to model process decisions, see Section
8.2.8.

The Process, Planning and Project parameters have currently no semantic

differences in PMT, so they can be chosen based on the intuition.

Parameters are always parameters of ProcessModules, so a ProcessModule

is like a function that has parameters and can be reused for different

values of the parameters, including a parameter dependent behavior.

User Manual of Process Modeling Tool
Version 1.2

Page 124

Since parameters shall be re-usable by many process modules they can
also be referred from ProcessModules using the association
“ParameterReferences”. This reference mechanism allows also to declare
parameters globally (in Process) and reuse them in all ProcessModules
that shall have them.

Note: if a ProcessModule has a parameter, this implies that automatically
all contained process modules “inherit” the same parameter.

Parameters are modeled as described in Figure 159.

Q Process # Q ProcessModule 7 [0..*] DeterminedByProcessModules

‘ .. *] processModules

.
-

[0..*] ReusingProcessModules

[0..*] Parameters

| EEI Parometer &

= Type : Type
&3 Binding : Binding

[0..*] parameters

..*] parameterReferences

[0..*] KeratorParameters

[0..1] ValueFromListParameter

[0..*] DeterminedVariables

A 7] 7]
[= bl = [|

B ProcessF‘arameteE‘| | B PrcjectParameterE| ‘Q PIanningParame@‘ ‘ H Processvariable £
| | | | |

Figure 159: Meta Model of Parameters

9.8.1 Parameter -> Named

Parameter is an abstract class for all PMT parameters.

Parameter has the following properties:
e Superclass: Named, see Section 9.3.1.
SubClasses:
o ProcessParameter
o PlanningParameter
o ProjectParameter
o ProcessVariable
Container: The following elements can contain Parameters
o Process
Attributes: -
Associations:
o Type: Type [0..1]: The type of the parameter.
o ReusingProcessModules: ProcessModules [0..*]:
ProcessModules that reuse the parameter.

User Manual of Process Modeling Tool
Version 1.2

Page 125

o IteratorParameters:Parameter [0..*]: The parameters that
iterate over this parameter (only meaningful if this parameter is
a list parameter), see Section 8.2.8 for the concept of iterators.
o ValueFromListParameter: Parameter [0..1]: The parameter
(list), where this parameter receives its values from, see Section
8.2.8 for the concept of iterators.
e Compositions: -

9.8.2 ProcessParameter -> Parameter

A Process Parameter is a specific Parameter. Its values are determined

during process compliance phase before planning the project.

ProcessParameter has the following properties:

e Superclass: Parameter, see Section 9.8.1.

e SubClasses: -

e Container: The following elements can contain all kinds of Parameters
o ProcessModule (and VerificationModule)

e Attributes: -

e Associations: -

e Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.3 PlanningParameter -> Parameter

A Planning Parameter is a specific Parameter. Its values are determined

when planning the project, e.g. during offer creation phase.

PlanningParameter has the following properties:

e Superclass: Parameter, see Section 9.8.1.

e SubClasses: -

e Container: The following elements can contain all kinds of Parameters
o ProcessModule (and VerificationModule)

e Attributes: -

e Associations: -

e Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.4 ProjectParameter -> Parameter

A Project Parameter is a specific Parameter. Its values are determined

within the project. ProjectParameter has the following properties:

e Superclass: Parameter, see Section 9.8.1.

e SubClasses: -

e Container: The following elements can contain all kinds of Parameters
o ProcessModule (and VerificationModule)

User Manual of Process Modeling Tool
Version 1.2

Page 126

e Attributes: -

e Associations: -

e Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.5 ProcessVariable -> Parameter

A Process Variable is a specific Parameter. Its values are determined
within the project but also impact the process. For example a TestResult
could have the values true/false and trigger different sub-processes.
ProcessVariable has the following properties:

e Superclass: Parameter, see Section 9.8.1.

e SubClasses: -

e Container: The following elements can contain all kinds of Parameters

o ProcessModule (and VerificationModule)

e Attributes: -
e Associations:

o DeterminedByProcessModules: ProcessModule [0..*]: the process
modules that determine the value of the variable, e.g. the
ProcessModule "“Run Test” determines the variables of the
ProcessVariable TestResult, see Section 8.2.8.

e Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal
but ProcessVariables have a different behaviour when drawing processes
graphically.

9.9 Process Frame

Main element of the process model are processes and process modules,
see Figure 160.

User Manual of Process Modeling Tool
Version 1.2

Page 127

Eg MNamed L
= Name : EString
o Description @ EString
o D : EString
o Comment @ EString
o LongDescription @ EString
o Deactivated : EBoolean = false
i
- . p
[H Process L H Preference E‘]
[&] [0..%] preferen =3
l = MaximalSafet;.rLew.‘;:I: Safetylevel = ASIL_D = Mame : EString
= Value : EString
10..%] processModules
[0..%] afterProcessModules Q ProcessModule (7]

e

[0..] beforeProcessModules) JT\ T A T

[0..%] SubProcessModuleReferences

[0..%] subProcessModules

Figure 160: Processes

9.9.1 Process ->Named

The element Process is the root element for all process models in PMT.
See Section 6 for the creation of new models using Process elements.

H Process (2]

o MaximalSafetylevel : Safetylevel = ASIL_D
= tools : Tool
= requirements : Requirement
= artifacts @ Artifact
= methods @ Method
=t processhModules : ProcessModule
= stakeHolders : StakeHolder
=t processConditions @ ProzessCondition
5 Parameters : Parameter
= Bindings : Binding
5= Types : Type
= preferences : Preference
| & filterscope : Processhodule

Figure 161: Meta-Model of Process with all Attributes and References

Process implements Named and in addition it contains the following
properties (see Figure 161):

e Superclass: "Named”, see Section 9.3.1.
User Manual of Process Modeling Tool Page 128
Version 1.2

e Attributes:
o MaximalSafetyLevel: SafetylLevel: Specifies the maximal
safety level of the process. ASIL_D is the default value:
e Associations:

o FilterScope: ProcessModule: [0..*]: the ProcessModules that
shall be used in selection dialogs (to filter not relevant elements).
e Containments:

o Tools: Tool [0..*]: The tools used globally within this process.

o Requirements: Requirement[0..*]: The available
requirements within this process.

o Artifacts: Artifact [0..*]: The (global) artifacts available in the
process.
Methods: Method [0..*]: the available methods in the process.
ProcessModules: ProcessModule [0.*]: The available
processModules in the process.

o StakeHolders: StakeHolder [0..*]: The available stake
holders / roles in the process.

o Depreciateds: ProcessConditions: ProcessCondition [0..*]:
The available conditions in the process.

o Bindings: Binding [0..*]: The bindings of variables and
parameters in the process.

o Parameters: Parameter [0..*]: The (global) parameters in the

process.
Types: Type [0..*]: The (global) type definitions in the process.
ToBeImplemented®: Preferences:Preference [0..*%]:

Preferences would allow to store the model relevant preferences,
e.g. validation rule settings in the mode, such that models would
validate identical in all environments, independent from the local
PMT preferences. Also the filter-scopes could be stored as
preferences.

o FilterScope: ProcessModule: [0..*]: the ProcessModules that
shall be used in selection dialogs (to filter not relevant elements).
This is just a useful simplification of editing in case many
processes are stored within one model.

8 This is a feature from the research project SPEDIT and might be removed in future versions
of PMT.

9 This is a feature that is already implemented in the meta model, but not supported from the
rest of the tool, such that it does not work as described.

User Manual of Process Modeling Tool
Version 1.2

Page 129

9.9.2 ToBelmplemented: Preference

The element Preference is an element in the model to store Preferences in
the model. Usually Eclipse preferences are user specific, but some PMT
preferences should be specified in the model to be equal for all users of
the model.

| H Preference E‘]
{ o Mame : EString ‘

o Value : EString

Figure 162: Meta-Model of Preference with all Attributes

Preference contains the following properties (see Figure 162):
e Attributes:
o Name: String: Specifies the name of the preference.
o Value: String: Specifies the value of the preference.
Note: Preferences can be fixed within the project and also stored using the
default Eclipse mechanisms.

9.9.3 History Records

History records can be used to document the history of the model. This is
especially required, since the generated documents have all the same
version 0.8 or 1.0.

History records are contained in the global Process container and have an
association to named, such that it is possible to specify the changes by
assigning the changed elements to the history record.

In the generated document all history records are listed that are

e Linked to elements contained in the selected process module

e Linked to process modules containing the selected modules

e Global (unlinked) records

This allows to have several models in one file and do not list all (unrelated
changes) to a process module.

History records are displayed as shown in Figure 163.

User Manual of Process Modeling Tool
Version 1.2

Page 130

[Properties &2 | 0= Qutline] e = = 0O
BASIC b
Model Version | 1.0 | Change Date |13.D?.ED19 =000 B @ || B
Model Status | Initial | Change Author | Oscar Slotesch |
Description | The first versicned version with model history |

o/ e
Changes

F'rocess Module Confidence in Tool Chain <-=> 8-11:2018

E'@ Requirement 8-11:2012 Confidence in the use of software tools <-» Create Library QKit, <-»> Create Tool QKit, <-» Pre..

Figure 163: History Record Basic Properties

History Records implements Named and in addition it contains the

following properties (see Figure 164):
e Superclass: "Named”, see Section 9.3.1.
e Attributes:

o changedDate: EDate: The date of the change (If the time is

00:00 it will not be added to the generated history)

o changedAuthor: String: The name of the author that did the

changes

o modelStatus: ModelStatus: The status of the model after the

change. It can have the following values:
= INITIAL (default)
= DRAFT
= IN_PROGRESS
= GENERATED

= REVIEWED
= FINAL

= VALIDATED
= MODELED

= VERIFIED

= RELEASED

= PRESENTED
o modelVersion: String: The version of the model
e Associations:

o Changes: Named: [0..*]: The changed / affected model

elements

Note that the order of the records is determined by the dates, if present,
otherwise alphabetical order of the model version strings. If this is not

User Manual of Process Modeling Tool
Version 1.2

Page 131

desired the IDs can be used to determine the order instead of the version
strings.

H HistoryRecord (2] H Process =
o changeDate : EDate o Maximalsafetylevel : Safetylevel = ASIL_D
= changeluthor: String o toc-ls.: Toal _
= modelStatus : ModelStatus = INTIAL | 15, + historyRecordq 0% o0 rements : Requirement
= medelversion @ String _ @ 0o ariifacts: Artifact
= methods : Method
[0..*] historyRecordEntries =t processModules : ProcessModule
ot stakeHolders : StakeHolder
@ ModelStatus 3 processConditions : ProzessCondition
&3 Parameters : Parameter
= INIMAL =* Bindings : Binding
= DRAFT = Types: Type
= IN_PROGRESS o3 preferences ; Preference
= GEMERATED | oa filterScope : ProcessModule
= REVIEWED i !j_]
= FINAL = /
- CHANGED . % Nomed L
— [0..%] ch = name : EString
[0..*] changes :
= MODELED
— VERIFIED o description : EString
— RELEASED o 1D : EString
o comment @ EStrin
= PRESENTED _ 4 ;)
o longDescription : EString
o deactivated : EBoolean = false

Figure 164: History Records
In the generated reports the history records are displayed in a table (see

Version Date Status Change of model Author
0.1 Jul 13, INITIAL Version 1.0 The first versioned Oscar Slotosch
2019 version with model history.

Created with current standards
(main parts): 150-26262:2018,
IEC-61508 2nd, EM 50657

0.2 Jul 19, IN_PROGRESS New QKit Model Started. Oscar Slotosch
2019 Change:
* Qualify Tool with QKit
0.3 Jul 21, IN_PROGRESS Corrected some typos. Change: Oscar Slotosch
2019 o LibraryQKit
0.4 Jul 21, IN_PROGRESS Added Tool QKit Process. Oscar Slotosch
2019 Change:

* (Qualify Tool with QKit
Table 135 Model History

Figure 165).

User Manual of Process Modeling Tool Page 132
Version 1.2

Version Date Status Change of model Author
0.1 Jul 13, INITIAL Version 1.0 The first versioned Oscar Slotosch
2019 version with model history.
Created with current standards
(main parts): 150-26262:2018,
IEC-61508 2nd, EN 50657
0.2 Jul 19, IN_PROGRESS New QKit Model Started. Oscar Slotosch
2019 Change:
* Qualify Tool with QKit
0.3 Jul 21, IN_PROGRESS Corrected some typos. Change: Oscar Slotosch
2019 o LibraryQKit
0.4 Jul 21, IN_PROGRESS Added Tool QKit Process. Oscar Slotosch
2019 Change:
* Qualify Tool with QKit

Table 133 Model History

Figure 165: Generated History Record (Report)

A smart way to create history records and assign them to the changed
elements is the “Add History Record” Action that works on every Named
element. This is done in the following steps:
1) Select the changed elements (or their containers) in the tree
browser
2) Start the “"Add History Record” Action as shown in Figure 166
3) Confirm the creation as shown in Figure 166
4) Update the created element by specific comments

Ctrl+7

Ctrl+Y

v %® Process Validas Qualification Processes
EI Requirement |50 26262:2018
B Requirement EN EN 50657:2017
B Requirement [EC IEC 61508
E Requirement Generator Requirements
S Requiremen’ '™ 7R o
EI Requiremen -TLE
Process Mo Redo
Process Mo
Process Mo of Cut
~ &2 Process Mo Copy
Process | Paste
. Verificatin _

Process | % Delete

€ Artifacts Validate
- 1} Stake Ho Control...
Y Method Vali
*ﬂ Tools Add History Record
+& Bindings Show DOT (Graphviz)

Figure 166: Starting “Add History Record Action”

User Manual of Process Modeling Tool
Version 1.2

Page 133

% Confirm Mew History Record O e

Add history 0.5 record 7

i8dd history record 0.5 for the 3 selected changes:|
- Validas Qualification Processes / Lib-CKit-Main (Requirement)
- Validas Cualification Processes / Validas Qualification Processes (ProcessModule)

- Validas Qualification Processes / LibraryCKit (ProcessModule)

Figure 167: Confirm “New History Record”

The generated history record has the following properties (see Figure

168):

e The new model version: This is computed by incrementing the last digit
from the most recent model version by one (starting with 0.1 if there is
no previous version found)

e The date of performing the action

e The status: same as previous one (or initial if none was found)

e The author: the name of the current user

e Description: “"Changed with PMT". This should be changed

e Changes: The list of performed changes / selected elements.

] Properties 2 | 5= Outline | e = = 08
BASIC -3
Model Version | 0.5 Change Date 2oraoe Bz E[@][=
Model Status IN_PROGRESS s Change Author |05car |
Description | Changed with PMT |

=% |8

Changes

&2 Process Module LibraryQKit

Prncess Module Validas Cualification Processes
Requirement Lik-CQKit-Main Library QKit Requirements

Figure 168: Properties of generated History Record

9.10 Process Models

The core of PMT are process models. Figure 169 gives an overview on the
main process elements that are all contained in the Process container or in
ProcessModules:

User Manual of Process Modeling Tool
Version 1.2

Page 134

e ProcessModule: main structuring element for processes, represents
activities in the processes.

e Artifacts: main data in processes.

e StakeHolder: the acting roles in processes.

e VerificationModule: special verification module to perform verification
activities.

e Criterion: Question that has to be answered during verification.
H Process L]

[0..*] stakeHolders = MaximalSafetylevel : Safetylevel = ASIL_D [0..%] artifacts
[3 [

[0..] processModules

B ProcessModule L ?] ?i{ ?Td ProcessModule

[0..*] RefiningProcessModules

[0..%] readByProcessModules
[0..*] stakeHfplders [0..*] InvolvedModules [0.%] createdByProcessModules
[0..1] StakeHclder

| Q StakeHolder = 0.%] InvolvedStakeHolders [0..*] cutputArtifacts [0..%] artifacts [0..*] RefiningArtifacts

[0..% . [0..*] inputArtifacts
o AssignedPerson : EString [0.."] QwnedMadules @ Jinputé g artifact [::l
o= Path : EString 0..1] RefinedArtifact
- 0. OwnedArTact o PartOfProduct : EBoolean = false
0..1] StakeHolder [0.."] QwnedArtifacts o= Projectinput : EBoclean = false |

[0..*] InvolvedStakeHolders [0..*] InvolvedArtifacts

| g verificationModule IZI|)
[0..*] ReferedByArtifacts

| = Implicit : EBoolean = false |

+ [0..*] SubArtifactReferences

[0..*] SubArtifacts

[0..%] Criteria

g criterion [

Figure 169: Main Process Elements

9.10.1 Process Module -> Variantable

The element ProcessModule is the main element for modeling processes.
It describes activities within the process that are performed by stake
holders and produce output artifact by processing input artifacts. They can
also be performed before / after other process module.

Process modules can have sub-modules and references to other processes
(see Section 8.2.5 for description of reference concept). Since process
modules correspond to tasks they can also be used for process
management and planning efforts.

ProcessModules can claim to satisfy requirements and they can be used to
implement process requirements. Verification Modules are a special form
(“subclass”) of ProcessModules.

Figure 170 shows the definition of ProcessModule with all references and
compositions (modeled as attributes in the diagram).

User Manual of Process Modeling Tool
Version 1.2

Page 135

H ProcessModule 7]

URI : E5tring
MumizerQfinstances : Elnt
Effort : EFloat = 0.0

Progress : EFloat = 0.0
Planned5StartDate : String
PlannedEndDate : EString

o EndDate : EString

o Status : ProcessStatus = DEFINED
O Layout : Layout = TOP_BOTTOM

= arignts : BoolTern

ODooDDoDaOoao

[0..*] InstantiatedinProcessiodules

5 requirements : Requirement

5 inputArtifacts : Artifact

5= tools : Tool

2 InvolvedStakeHolders : StakeHolder
= = preMMCondition : MMCondition
10..1] InstanceOfProcesshodule | =+ postMMCondition : MMCondition
= outputArtifacts : Artifact

=t parameters : Parameter

5t bindings : Binding

& Compliances : Compliance

= StakeHolder: StakeHolder

5 ClaimedComplianceRequirements : Requirement
= parameterReferences @ Parameter

=t DeterminedVariables : Process\Variable

=t artifacts : Artifact

5 stakeHolders : StakeHolder

| o2 Types: Type

M, T T

[0..*] afterProcessModules

[0..*] beforeProcessModules

. [0..*] subProcessModules
[0..*] SubProcessModuleReferences

Figure 170: Meta-Model of ProcessModule with all Attributes and References

Therefore the element ProcessModule contains the following properties
that can be edited:
e Superclass: Variantable, see Section 9.3.2.
e Subclass: VerificationModule, see Section 9.10.4.
e Container: The following elements can contain ProcessModules:
o Process
o ProcessModule (and VerificationModule)
e Attributes:
o URI: String: an Unique Resource Identifier, pointing to a more
detailed process description, e.g. a Wiki-page
o NumberOfInstance: int: The number of planned instances of
the process. This is only optional.

User Manual of Process Modeling Tool
Version 1.2

Page 136

o Effort: float: The estimated effort for performing this task, that
can be used to plan projects and to estimate project status.

o Progress: float: can be used to manually trace the progress to
determine the project status.

e Associations:

o Requirements: Requirement [0..*]: the (usually atomic)
requirements that this process module implements. Note this is
not the claimed requirements, they usually do contain/require
many other requirements.

o ClaimedComplianceRequirements: Requirement [0..*]: the
main requirements that this process module claims to be
compliant.

o InputArtifacts: Artifact [0..*]: the input artifacts that are
processed by this module.

o OutputArtifacts: Artifact [0..*]: the output artifacts that are
created by this process module.

o Tools: Tool [0..*]: The tools that are used within this process
module.

o RefinedProcessModule: ProcessModule [0..1]: The process
module that is refined by this process module, see Section 8.3

o RefiningProcessModules: ProcessModule [0..*]: The
refining process modules that specialize this process module, see
Section 8.3.

o beforeProcessModules: ProcessModule [0..*]: the process
modules that this module is before, so the related process
modules come after this process.

o afterProcessModules: ProcessModule [0..*]: the process
modules that this module is after, so the related process modules
come before this process.

o StakeHolder: Stakeholder [0..1]: The responsible stake
holder for this process.

o InvolvedStakeHolders: Stakeholder [0..*]: Other involved
stakeholders (not the responsible one).

o Depreciated: preMMCondition: MMConditon [0..1]: meta
model condition that has to be satisfied before the process can
be executed (only meaningful within model-based processes).

o Depreciated: postMMCondition: MMConditon [0..1]: meta
model condition that has to be satisfied after the process can be
executed (only meaningful within model-based processes).

o SubProcessModuleReferences: ProcessModule [0..*]: the
process modules that are included via references here, see
Section 8.2.5.

User Manual of Process Modeling Tool Page 137
Version 1.2

o InstanceOfProcessModule: ProcessModule [0..1]: The
generic, parameterized process module that this process is an
instance of. See Section 8.2.7 for instantiations.

o InstantiatedInProcessModules: ProcessModule[0..*]: The
processes that are instances of this generic process modules. See
Section 8.2.7 for instantiations.

o Compliances: Compliance[0..*]: The compliances that this
process is contributing.

o ParameterReferences: Parameter[0..*]: The referred
parameters from other modules that also apply to this module.
See Section 8.2.5 about parameterization.

o DeterminedVariables: ProcessVariable[0..*]: The process
variables that values are determined from this process module,
see Section 8.2.8 for using process variables.

e Containments:

o Tools: Tool [0..*]: The tools used globally within this process.

o Requirements: Requirement[0..*]: The available
requirements within this process.

o Artifacts: Artifact [0..*]: The (global) artifacts available in the
process.

Methods: Method [0..*]: the available methods in the process.
ProcessModules: ProcessModule [0.*]: The available
processModules in the process.

o StakeHolders: StakeHolder [0..*]: The available stake
holders / roles in the process.

o Depreciated!9: ProcessConditions: ProcessCondition
[0..*]: The available conditions in the process.

o Bindings: Binding [0..*]: The bindings of variables and
parameters in the process.

o Parameters: Parameter [0..*]: The (global) parameters in the
process.

Types: Type [0..*]: The (global) type definitions in the process.
ToBeImplemented!l: Preferences: Preference [O0..*%]:
Preferences would allow to store the model relevant preferences,
e.g. validation rule settings in the mode, such that models would
validate identical in all environments, independent from the local

10 This is a feature from the research project SPEDIT and might be removed in future
versions of PMT.

11 This is a feature that is already implemented in the meta model, but not supported from the
rest of the tool, such that it does not work as described.

User Manual of Process Modeling Tool
Version 1.2

Page 138

PMT preferences. Also the filter-scopes could be stored as

preferences.

9.10.2 Artifact -> Variantable

Artifacts represent the data in the process, e.g. a specification, model or
code. Artifacts can be contained in Process (global artifacts) and they can
be contained in process modules (local artifacts). They can be modeled as

depicted in Figure 171.

[0..%] Refin ing.ﬂ.r‘tifacts_h

[0..¥] DependsOnArtifacts

H Artifact

documentStatus @ EString

version : EString

Path : E5tring

Status : ProcessStatus = DEFINED
PartOfProduct : EBoolean = false
Projectinput : EBoolean = false
Layout : Layout = TOP_BOTROM
Mumberofinstances @ Eint

Effort : EFloat = 0.0

Progress : EFloat = 0.0
Planned5tariDate : EString
PlannedEndDate : E5tring
EndDate : EString

Format : 5tring

ODoooDoDoDODODODDODDODODOG ODG

(= Qe
o= historyRecordEntries staryRecord

= yerificd B ‘erifier
o werifiedBy . IWerifie

5% readByProcesshModules : ProcesshModule

L5 processConditions : ProzessCondition

[0..%] Dependir

[0..*] ReferedByArtifacts

M M M M

=]

. 1] RefinedArtifact

[0..] SubArtifactReferences

[0..¥] SubArtifacts

Figure 171: Meta-Model of Artifacts with all Properties

Artifact has the following properties:

e Superclass:

o Variantable, see Section 9.3.2.
o IVerified, see Section 9.3.3.

e SubClasses:
o Model

User Manual of Process Modeling Tool

Version 1.2

gArtifacts

Page 139

e Container: The following elements can contain Artifacts:

O

O

Process
ProcessModule (and VerificationModule)

e Attributes:

©)

PartOfProduct: Boolean: This indicates that the document is
part of the product. PMT checks that every document in the
process is created and used. For artifacts that are part of product
it suffices that they are created.

ProjectInput: Boolean: This indicates that the document is
input to the process. PMT checks that every document in the
process is created and used. For artifacts that are project input it
suffices that they are used.

Path: String: Required to denote the path (absolute or relative)
of the document, e.g. “QKit/TestSuite” or
“C:\Qualification\Target\"”. The path is exported into VVT tool. It
is used to group the checks and to determine if an element has
changed and required re-verification/validation.

Status: ProcessStatus: Describes the status of the artifact.
This can be used for project management, see Section 8.2.11.
DocumentStatus: String: Can be used to describe the status of
the document, e.g. “"Draft” or “Final”. Currently this is not used in
PMT.

Format: String: The format of the artifact, e.g. pdf.

Version: String: Can be used to describe the version of the
document, e.g. "0.8"” or “"1.0”. Currently this is not used in PMT.

e Associations:

o

readByProcessModules: ProcessModule [0..*]: The process
modules that use the artifact as input.
createdByProcessModules: ProcessModule [0..*]: The
process modules that create the artifact as output.
DependsOnArtifacs: Artifact [0..*]: Allows to model
dependencies on the artifact level

DependingArtifacs: Artifact [0..*]: Allows to model
dependencies on the artifact level

createdByProcessModules: ProcessModule [0..*]: The
process modules that create the artifact as output.

StakeHolder: Stakeholder [0..1]: The responsible stake
holder for this artifact.

InvolvedStakeHolders: Stakeholder [0..*]: Other involved
stakeholders (not the responsible one).

User Manual of Process Modeling Tool
Version 1.2

Page 140

o RefinedArtifact: Artifact [0..1]: The artifact that is refined by
this artifact, see Section 8.3

o RefiningArtifacts: Artifact [0..*]: The refining artifacts that
specialize this artifact, see Section 8.3.

o SubArtifactReferences: Artifact [0..*]: the artifacts that are
included via references here, see Section 8.2.5.

o ReferencedByArtifacts: Artifact [0..*]: The artifacts that
include this artifact via reference, see Section 8.2.5.

o Compliances:Compliance [0..*]: the compliances that this
artifacts contributes.

o Depreciated: ProcessConditions: ProzessCondition [0..*]: a
condition where this artifact is involved.

e Compositions:

o SubArtifacts: Artifact [0..*]: The artifacts that are contained
in this artifact, e.g. the Test in the TestSuite or the chapters in
the document.

9.10.3 StakeHolder -> Variantable

Stakeholders are the responsible (and contributing) roles / persons in
processes. They “own” processes and artifacts. They can be modeled as
depicted in Figure 172.

H stakeHolder (2]

O AssignedPerson : EString

o Layout : Layout = TOP_BOTTOM
= Ariande « Brnl Tern

0. R HEL R

= | avnutBefore Triantahle

= avnutdfter

o OwnedModules : ProcessModule
2 InvolvedModules : Processiodule
= Compliances : Compliance

5 OwnedArtifacts : Artifact

2 InvolvedArtifacts @ Artifact
| & OwnedTools : Tool

Figure 172: Meta-Model of StakeHolder with all Properties
StakeHolder has the following properties:
e Superclass:
o Variantable, see Section 9.3.2.
e SubClasses: -
e Container: The following elements can contain StakeHolders:
o Process
o ProcessModule (and VerificationModule)
e Attributes:

User Manual of Process Modeling Tool
Version 1.2

Page 141

O

AssignedPerson: String: one person can be assigned to this.
In case several persons shall be used, e.g. Testers, they can be
listed in this field.

e Associations:

©)

ownedModules: ProcessModule [0..*]: The process modules
that the stakeholder is responsible for.

InvolvedModules: ProcessModule [0..*]: the process
modules that this stakeholder is involved, but not responsible for.
OwnedArtifacts: Artifact [0..*]: the artifacts the stakeholder
is responsible for.

InvolvedArtifacts: Artifact [0..*]: the artifacts that this
stakeholder is involved, but not responsible for.

Compliances: Compliance [0..*]: the compliances that this
stakeholder contributes.

OwnedTools: Tool [0..*]: the tools that this stakeholder is
responsible for.

e Compositions: -

9.10.4 VerificationModule -> ProcessModule

Verification Modules are a special case of ProcessModules. They have been
introduced since we decided that every requirement has to be verified and
there needs to be a formal difference between a generic process and a
verification module. A verification module has Criteria (checks/questions)
that have to be verified within the project. The verification modules are
the elements that are the inputs for the verification and validation tool
(VVT). VerificationModules verify always something, usually an artifact.

User Manual of Process Modeling Tool
Version 1.2

Page 142

H ProcessModule (2]

i

H verificationModule (2]

o Implicit : EBoolean = false
= arignts * BoolTerm

&2 Varionts : BoolTe

= | ovnutBefore * Variantahle
2 LoyoutBefore : Variantable
= | guputdfer qrigntahle
& LayoutAfter : Variantable

= verificd B
O Yo el

T verifies « [Werified
o s L Lo]l .

| i VerifiedCompliances : Compliance

jEI..*ICr teria

| g Criterion E‘]

= Larignts * BoolTerm
o Wariants : BoolTe
A

= | gvoutBetore * Varigntahle
o LoyvoutBefore : Variontable

= | guoutdfer @ Variantahle
o Layoutdjfter : Variantable

Figure 173: Meta-Model of VerificationModule with all Properties

In addition to ProcessModule the VerificationModule has the following
properties:
e Superclass:
o ProcessModule, see Section 9.10.1.
e SubClasses: -
e Container: The following elements can contain VerificationModules:
o Process
o ProcessModule (and VerificationModule)
e Attributes:

o Implicit: Boolean: indicates that the verification is done
implicitly, i.e. without further action required. In this case this
verification module should not have criteria, but Sub-Modules
(modeled as Sub-Processes).

e Associations:

o VerifiedCompliances: Compliance [0..*]: the compliances
that this verification module explicitly verifies. Note that this is
the "“Mandatory” relation to Compliance, because every
Compliance element has to have ProcessModules that implement
them (usually not verification modules) and VerificationModule
(or Criteria) to verify them.

e Compositions:
o Criteria: Criterion [0..*]: The criteria to be checked when
performing this verification and validation.

User Manual of Process Modeling Tool Page 143
Version 1.2

9.10.5 Criterion -> Variantable

A Criterion is a single question that has to be answered as part of a
verification, for example: “Is the specification clear?” or “Has the test
been executed successfully?”

Criterion has the following properties:

e Superclass:
o Variantable, see Section 9.3.2.

e SubClasses: -

e Container: The following elements can contain VerificationModules:
o VerificationModule

e Attributes: -

e Associations:

o VerifiedCompliances: Compliance [0..*]: the compliances
that this criterion explicitly verifies. Note that this is the
“Mandatory” relation to Compliance, because every Compliance
element has to have ProcessModules that implement them
(usually not verification modules) and VerificationModule or
Criteria to verify them.

Compositions: -

Note: that the “question” of the criterion has to be modeled within its
description. So a good example of a Criterion is:

¢ Name: “Clearness”

e ID: "“C1”

e Description: “Is the specification clear?”

9.11 Requirements & Compliance

Requirements and compliance are core functionalities of PMT. Their
handling is described in Section 8.2.3 and 8.2.4. The meta model for
Requirements & Compliances is depicted in Figure 174.

User Manual of Process Modeling Tool
Version 1.2

Page 144

| H Process L
[0..*] requirements

| o MaximalSafetylevel : Safetylevel = ASIL. [H Requirement it

[[0..*] subRequirements
o recommentedFrom : Safetylevel = ASIL

o recommentedTo : Safetylevel = ASIL D

[0..%] ClzimedComplianceRequirements '—p—l<anis 3 3
[0..%] ClaimingProcessModules [0..*] requ redﬁ',flequ rements [0..1] Requirement

[0..*] requiredRequirements

[0..%] processhodules

| E Processhodule £ [0..*] ContainedCompliances

(& ristoryRecordEntries - HistoryRecord

-t efiningProgessModules

0..] Compliances [04*] ProcessModuleCompliances

0..1] RefinefiProcessModule [0..%
_0“']] il S E Compliance [#].. [0.*] ContainedCompliances

= Applicable : Boolean = true

]

[0..%] SubCompliances

0.*] Compliances

B VerificationModule Ed o
= = [0..%] VerificationModules [0..*] VerifiedCompliances

[0..%] Verified Cg¢mpliances

[0..¥] Criteria

| B Ccriterion Ll

i _. _:-_- = [0..%] Criteria

Figure 174: Metamodel for Requirements & Compliances

9.11.1 Requirement -> Variantable

The requirement describes requirements for the processes, usually derived
/ copied from safety standards. Important is to keep the traceability back
to the standards. This is typically done by using the IDs from the
standards as IDs.
Requirement has the following properties:
e Superclass:

o Variantable, see Section 9.3.2.
e SubClasses: -
e Container: The following elements can contain Requirements:

o Process: Top level requirements like “"ISO 26262" are usually
contained in the process element

o Requirement: Sub-Requirements, like "“8-11" are usually
contained in other requirements.

e Attributes:

o RecommendedFrom: SafetylLevel: the lower level where this
requirement is mandatory from. This corresponds to “highly
recommended” in most standards.

o RecommendedFrom: SafetylLevel: the upper level where this
requirement is mandatory.

e Associations:

o RequiredRequirements: Requirement [0..*]: The required

requirements. Usually all contained requirements are by default

User Manual of Process Modeling Tool
Version 1.2

Page 145

also “required”. This association can be sued to implement
references to other chapters

o RequiredByRequirements: Requirement [0..*]: the inverse
relation of required requirements (see above).

o ClaimingProcessModules: ProcessModule [0..*]: the
process modules that claim to satisfy this requirement.

o ProcessModuleCompliances: Compliance [0..*]: the
compliance argumentations for this requirements that are
contained in ProcessModules.

e Compositions:
o SubRequirements: Requirement [0..*]: The contained
requirements usually the sub-sections of a section or the
requirements in a section.

o Complainces: Complaince [0..%]: The compliance
argumentation explaining how this requirements is satisfied and
verified.

9.11.2 Complaince -> Variantable

The compliance element is used to express the compliance with a
requirement (either the containing or a linked requirement). Compliance
consists of a reasonable argumentation (in the description) and three
related things:
e Requirement: the requirement that is satisfied
e ProcessModules: the ProcessModules that implement the requirement
(also Stakeholders or Artifacts can be used to implement the
requirement).
e VerificationModule: the verification module that checks (using criteria)
if the requirement is satisfied.
Compliance has the following properties:
e Superclass:
o Variantable, see Section 9.3.2.
e SubClasses: -
e Container: The following elements can contain Requirements:
o ProcessModule: ProcessModule can contain compliance
argumentations in a modular/reusable way.
o Requirement: Each requirements can contain it's compliance
argumentation.
e Attributes:

User Manual of Process Modeling Tool Page 146
Version 1.2

O

Applicable: Boolean (default=true): indicates if the Requirement
is applicablel2,

e Associations:

O

ProcessModules: ProcessModule [0..*]: the process modules
that implement this requirement.

StakeHolders: StakeHolder [0..*]: the stake holders that
implement this requirement.

Artifacts: Artifact [0..*]: the artifacts that implement this
requirement.

RequiredRequirements: Requirement [0..*]: The required
requirements. Usually all contained requirements are by default
also “required”. This association can be sued to implement
references to other chapters

Requirement: Requirement [0..1]: the requirement that this
compliance is arguing (Note this is only one, since every
requirements should have it's own argumentation). In case the
compliance is contained in a Requirement, this association is not
needed.

SubCompliances: Compliance [0..*]: the compliance that are
logically required to argue the compliance of the requirements.
VerificationModules: VerificationModule [0..*%]: the
verification modules that verify that this Compliance
argumentation is true.

Criteria: Criterion [0..*]: the Criteria that verify that this
Compliance argumentation is true.

Note every Compliance Argumentation has to have either Sub-
Compliances or VerificationModules or Criteria.

e Compositions:

o

ContainedCompliances: Compliance [0..*]: the compliance
that are contained in this compliance, per default contributing to
the compliance.

12 Usually we try to avoid non-applicable requirements, e.g. by tailoring using variants,
however sometimes it is easier to mark a requirement as no applicable using this attribute.

User Manual of Process Modeling Tool
Version 1.2

Page 147

9.12 Model-Based Processes

Model-Based processes usually come with a modeling tool. This modeling
tool has a meta model that formalizes the models that can be built
syntactically.

The elements to describe model-based processes are (see Figure 175):

e Model: Specialization of Artifact containing the modeling elements

e MetaModel: Container for the meta-model (in order to make it re-
usable in different models)

e MetaModelElement: the modeling elements that can be used to create
the model

e MetaModelAttribute: the attributes of the elements that can be used to
describe the elements

e MetaModelAssociation: the associations of the elements that can be
used to describe the relations between elements

g arifact @
] L]
0..1] MetaMode H metaModel
=+ Tool : Tool
[
0..*] OptienalinMecdels Slrane [l [0..] OptionalinModels
ode

[0..*] MandatoryinModels [0..%] MandatoryinModels

0..*] MandatonyinModels [0..*] OpticnallnModels

0..*] MandatoryElements [0..*] Optionaltlements

[0..*] OptionalAssociations

10..*] MandatoryAssodiations

E MetaModelElement [7]| Jo.*] MetaModelElements]
[0..*] Optionalattributesy i0.*] MandatoryAttrioutes = IsRoot : EBoolean = false | o 1) ToElement B MetaModelAssociation IE‘|
‘ E MetaModelattribute [E | = 1sAbstract: Boolean = false [e—— = Containment : EBoolean = false
[= Type : Estring 0..*] MetaModelAttributes [0..*] MetaModelAssociations | o Cardinality : Cardinality = CARDINALITY 0_to_1
[0.%] 3erent§|

Figure 175: Meta-Model for Model-Based Processes

In contrast to other UML models & modeling tools, e.g. EMF, the goal of
this model is not to generate code from the meta model, but just to
describe the model. Therefore some aspects do not need to be modeled,
e.g. the inverse relations or the cardinalities3 of the associations. Those
things are part of the modeling tools that are described.

9.12.1 Model -> Artifact

The model element is a description of the models that are created within a
model-based process. In contrast to an Artifact it allows to provide a
detailed specification of a model element including a specification of
mandatory and optional elements.
Model has the following properties:

e Superclass:

13 Cardinalities have been added to the model for description purpose only.

User Manual of Process Modeling Tool
Version 1.2

Page 148

o Artifact, see Section 9.3.2.
e SubClasses: -
e Container: The following elements can contain Models:

o Process

o ProcessModule (and VerificationModule)

e Attributes: -
e Associations:

o MandatoryElements: MetaModelElement [0..%]: The
mandatory elements that have to be used when creating the
model

o OptionalElements: MetaModelElement [0..*]: The optional
elements that can be used when creating the model.

o MandatoryAttributes: MetaModelAttribute [0..*]: The
mandatory attributes that have to be used when creating the
model.

o OptionalAttributes: MetaModelAttribute [0..*]: The optional
attributes that can be used when creating the model.

o MandatoryAssociations: MetaModelAssociation [0..*]: The
mandatory associations that have to be used when creating the
model.

o OptionalAssociations: MetaModelAssociation [0..*]: The
optional associations that can be used when creating the model.

e Compositions:

o MetaModel: MetaModel [0..1]: the container for the meta

model

Note: Models have to be created manually within PMT, however the meta
model can be imported automatically for modeling tools built with Eclipse,
since it is possible to import .ecore files and to create the corresponding
models, see (“Ecore Import”) in Section 7.2.4.

9.12.2 MetaModel

The meta model is the meta model of a used modeling tool. It can be used
to build different kinds of models, for example an UML Tool can have state
charts and class diagrams that both use packages. Therefore the meta
model is a separate entity that can be reused within all models of that
tool.
MetaModel has the following properties:
e Superclass:
e SubClasses: -
e Container: The following elements can contain MetaModel elements:

o Model

User Manual of Process Modeling Tool Page 149
Version 1.2

Attributes: -

Associations: -

O

Tool: Tool [0..1]: The modeling tool that is based on this meta
model.

Compositions:

©)

MetaModelElements: MetaModelElement [0..%]: The
elements in the meta model.

9.12.3 MetaModelElement -> Named

The meta model element corresponds to a single element in the modeling
tool, e.g. a class or a state.
MetaModelElement has the following properties:

Superclass:

o

Named, see Section 9.3.1.

SubClasses: -

Container: The following elements can contain MetaModelElements:

o

MetaModel

Attributes: -

o

o

IsRoot: Boolean: Characterizes the root element in the model
that is the root of the model tree. In PMT “Process” is the root
element for all models.

IsAbstract: Boolean: Is true for interfaces or abstract classes.

Associations:

o

MandatoryInModels: Model [0.*]: The models in which this
element is mandatory.

OptionalInModels: Model [0.*]: The models in which this
element is optional.

Parents: MetaModelElements [0.*]: The parent/superclass
elements/interfaces of this model element. For Example
“"MetaModelElement” has the parent "Named”.

Compositions:

o

MetaModelAttributes: MetaModelAttribute [0..*]: The
attributes of the model element.

MetaModelassociations: MetaModelAssociation [0..*]: The
associations/relations of the model element.

9.12.4 MetaModelAttribute -> Named

Attributes are used to specify properties of elements. Using the element
MetaModelAttribute this can be specified. MetaModelAttribute has the
following properties:

Superclass:

©)

Named, see Section 9.3.1.

User Manual of Process Modeling Tool
Version 1.2

Page 150

e SubClasses: -
e Container: The following elements can contain MetaModelAttributes:
o MetaModelElement
e Attributes: -
o Type: String: Describes the type of the attribute, e.g. String or
Boolean.
e Associations:
o MandatoryInModels: Model [0.*]: The models in which this
attribute is mandatory.
o OptionalInModels: Model [0.*]: The models in which this
attribute is optional.
e Compositions: -

9.12.5 MetaModelAssociation -> Named

Associations are used to describe the relations between elements. They
can be compositions and non-containing associations. Sometimes
associations denote only non-compositional relations.
MetaModelAssociation has the following properties:
e Superclass:
o Named, see Section 9.3.1.
e SubClasses: -
e Container: The following elements can contain MetaModelAssociations:
o MetaModelElement
e Attributes:
o Containment: Boolean: Is true for associations that describe
compositions, i.e. contain other elements in the modeling tree.
o Cardinality: Cardinality: Specifies the cardinality of the
associations (currently this is only used for description purpose).
e Associations: -
o MandatoryInModels: Model [0.*]: The models in which this
association is mandatory.
o OptionalInModels: Model [0.*]: The models in which this
association is optional.
e Compositions: -

9.13 Tools

Tools play an important role in processes and support methods!4. They
can be modeled as depicted in Figure 176.

14 Note that the use of some methods is required from safety standards, however for
simplicity we decided not to make a so formal model of the standards that would include
methods and their safety requirements. This can be done in the TCA tool when refining the
model. In PMT Methods have currently no special semantics and can be modeled only for
User Manual of Process Modeling Tool

Version 1.2

Page 151

[]

| H frocess @ [0..*] methods

0.%] tocls
B Tool [
0. Mod
| H ProcessModule] 0. processModules o PreliminaryClassification : EString [0.%] Methods B Method -
‘ [0.*]tools | = ClassificationExplanation : EString | [0.7] Tools o
[0..%] OwnedTools
0.1 Tec [0..1] ToclOwner
[01] MetaMode | [staketioiger |
H MetaModel | |
10..1] MetaMode
H Model @

Figure 176: Meta-Model of Tools

9.13.1 Tool -> Variantable

Tools can be used to support the application of methods in processes. In
safety relevant processes it is important to use the tools safely. Therefore
they have to be classified and eventually qualified. Tool has the following
properties:
e Superclass:
o Named, see Section 9.3.2.
e SubClasses: -
e Containers:
o Process: Tools can only be contained in the global container.
e Attributes:
o Preliminary Classification: String: a preliminary classification
of the tool, for example “TCL1"”, “uncritical” or “To be qualified”.
o Classification Explanation: String: Should explain the
preliminary15 classification.
e Associations: -
o ProcessModules: ProcessModule [0.*]: The process modules
(“use cases”) where the tool is used.
o Methods: Method [0.*]: the supported methods from the tool.

documentation purpose.

15 Note this is not a standard compliant way to classify tools, but might serve as a first
orientation. Use the TCA tool from http://www.validas.de/en/services/tca/ for standard
compliant classification and qualification. Future versions of TCA might be able to import
PMT models for refinement.

User Manual of Process Modeling Tool
Version 1.2

Page 152

http://www.validas.de/en/services/tca/

o ToolOwner: StakeHolder [0..1]: The owner responsible for the
tool (and its qualification).
e Compositions: -

9.13.2 Method -> Named

Methods can be required from safety standards and applied within
processes. Method has the following properties:
e Superclass:
o Named, see Section 9.3.1.
e SubClasses: -
e Containers:
o Process: Methods can only be contained in the global container
e Attributes: -
e Associations: -
o Tools: Tool [0.*]: The tools that support this method.
e Compositions: -

10 Known Issues

The known issues can be accessed at the bug tracing system of the
https://validas.atlassian.net/projects/PMT/issues/ (internally). Issues can
be submitted by sending mailto:info@validas.de

The errors are classified with a priority (blocker=highest, critical=high,
major=medium, minor=log, and trivial=lowest).

For the version 1.0 the following known bugs with priority major or higher
are known (at April 17%, 2019). The corresponding work arounds are
described if applicable.

e PMT-16: Preferences

e PMT-39: EMF Form of Process does not collapse

e PMT-38: Cannot Delete Types and Parameters

e PMT-20 Scroll-Bars in Forms not OK

e PMT-9 StackOverflow when opening inconsistent Model

None of the currently there are no blockers available, therefore this
version of PMT was released.

Please report issues found during the work with the PMT to
info@validas.de.

User Manual of Process Modeling Tool
Version 1.2

Page 153

mailto:info@validas.de
https://validas.atlassian.net/browse/PMT-38

11 Licenses & Liability

The PMT/VVT are products of Validas AG and must not be distributed
without permission of Validas AG.
It has been developed using Eclipse and POI and docx4j. The licenses of
these components are:

e Eclipse: EPL: http://www.eclipse.org/legal/epl-v10.html

e POI: Apache License Version 2.0: http://www.apache.org/licenses/

16
e docx4j: Apache License Version 2.0

Validas AG does not take any guarantee for the functionality of the PMT /
VVT tool. As stated in the previous section, PMT has a TCL 1 and might
have critical errors that the user has to detect during the review of the
results.

VALIDAS AG AND ITS AFFILIATES MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. VALIDAS AG AND ITS AFFILIATES SHALL NOT BE
LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE
INFORMATION CONTAINED IN IT, EVEN IF VALIDAS AG AND ITS
AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

16 Note the Apache Licence 2.0 is distributed with this product in the jar file of the plugin
de.validas.excelinterface, which is found in the plugins directory of the PMT.

User Manual of Process Modeling Tool Page 154
Version 1.2

http://www.eclipse.org/legal/epl-v10.html
http://www.apache.org/licenses/

12 Examples & Further Documentation

In the distribution of the tool chain analyzer is an examples directory.
It can be found at <PMT>/plugins/
de.validas.spm.pmt.examples_1.0.0<date>/.
It contains the following Models:
e ModuleTest: Model and artifacts for a module test process and it's
compliance to ISO 26262
e MetaProcess: Process Model for the creation of the process
e Documentation/*: models for images and examples used within the
user manual

In addition to this user manual, there is a First Step presentation available
“PMTExample.ppt” in the example plugin. It is located in
e ModuleTest/PMTExample.ppt

Furthermore there are (currently German only) video tutorials available
for download explaining the method. They can be found in the PMT section
of http://www.validas.de/en/services/qualification/.

User Manual of Process Modeling Tool
Version 1.2

Page 155

http://www.validas.de/en/services/qualification/

