

User Manual of Process Modeling Tool Page 1
Version 1.2

 L

User Manual

The Validas

Process Modeling Tool1
Version 1.2

Overview:

The Process Modeling Tool (PMT) is a process modeling tool for safety

relevant processes. It supports the compliance argumentation with safety

standards in the model and generates compliance reports as well as

process reports and model-based verification and validation plans. Those

are managed using the Verification and Validation Tool (VVT), which can

read the .vvt files generated from PMT.

Based on the process model PMT can also be used to manage the process.

1 This work has been developed within the German research project SPEDIT. SPEDIT was
supported by the Bundesministerium für Bildung und Forschung (BMBF).

User Manual of Process Modeling Tool Page 2
Version 1.2

Contents

1 Introduction ... 5

2 Glossary ... 6

3 Safety Strategy .. 8

4 Compliance Method .. 10

5 Process Notation .. 13

5.1 General .. 14

5.2 Process View ... 15

5.3 Artifact View ... 16

5.4 Stake Holder View ... 17

6 Installation & Starting PMT .. 18

7 User Interface .. 22

7.1 Tool Menus ... 23

7.1.1 File Menu ... 23

7.1.2 Edit Menu .. 24

7.1.3 PMT Editor Menu ... 24

7.1.4 Window Menu ... 24

7.1.5 Help Menu.. 25

7.2 Tree Browser .. 25

7.2.1 On Various Elements ... 27

7.2.1.1 Show DOT (Graphviz) ... 27

7.2.1.2 Export DOT (Graphviz) .. 28

7.2.1.3 Infer and Set Types .. 28

7.2.1.4 Check Types .. 29

7.2.2 On Process Element .. 30

7.2.3 On ProcessModule Element .. 31

7.2.4 On Model Element ... 32

7.2.5 On Requirement Element ... 34

7.2.6 On Parameter, Binding, EnumValue and EnumType Elements . 37

7.3 Process Module View .. 38

7.4 Compliance View ... 39

7.5 Projection View .. 39

7.6 Diagnostic View ... 43

8 Features of PMT ... 44

8.1 Terms and Types ... 44

8.2 Process Modeling ... 49

8.2.1 Processes ... 49

8.2.2 Model-Based Processes .. 52

8.2.3 Requirements ... 54

8.2.4 Compliance .. 56

8.2.5 Reuse & Linking .. 59

User Manual of Process Modeling Tool Page 3
Version 1.2

8.2.6 Tailoring .. 61

8.2.7 Instantiation... 62

8.2.8 Variables & Variants .. 66

8.2.9 Layouting ... 66

8.2.10 Tools ... 69

8.2.11 Project Management .. 70

8.2.11.1 Project Overview .. 71

8.2.11.2 Project Status Details ... 72

8.2.11.3 Excel-Interface for Project Management 73

8.2.11.4 Project Status Update ... 74

8.3 Consistency & Process Interfaces ... 75

8.4 Refinement ... 77

8.5 Validation ... 82

8.5.1 Syntactic Validation ... 83

8.5.2 Graphical Validation .. 85

8.5.3 Semantic Validation .. 85

8.6 Interfaces ... 85

8.6.1 ProcessModule Ex- and Import ... 85

8.6.2 VVT ... 86

8.6.3 Excel ... 88

8.6.3.1 Parameters Interface .. 88

8.6.3.2 Process Status ... 91

8.6.3.3 Process Description Export ... 92

8.6.3.4 Development Interface Agreement.............................. 93

8.6.3.5 Offer ... 94

8.6.4 Ecore Importer ... 96

8.7 Report Generators ... 97

8.7.1 Process Report ... 97

8.7.2 Compliance Report .. 98

8.8 Preferences ... 99

8.9 Filter Scoping .. 100

9 Meta Model of PMT ... 103

9.1 Syntax of Meta Model ... 104

9.2 Enumerations .. 106

9.2.1 ProcessStatus ... 106

9.2.2 SafetyLevel .. 107

9.2.3 Cardinality ... 107

9.3 General Interfaces ... 107

9.3.1 Named .. 108

9.3.2 Variantable -> Named ... 109

9.3.3 Verification Interface ... 110

9.4 Scoping, Hierarchy and Reuse ... 111

9.5 Types ... 112

9.5.1 Type -> Named .. 113

9.5.2 EnumType -> Type ... 114

9.5.3 EnumValue -> Named ... 114

9.5.4 ListType -> Type .. 115

User Manual of Process Modeling Tool Page 4
Version 1.2

9.6 Terms .. 116

9.6.1 Term ... 117

9.6.2 EnumValueRef -> Term ... 118

9.6.3 Constant -> Term ... 118

9.6.4 ListTerm -> Term ... 119

9.6.5 BoolTerm -> Term .. 119

9.6.6 ParamRef -> Term .. 120

9.6.7 InList -> BoolTerm .. 121

9.6.8 ORTerm -> BoolTerm .. 121

9.6.9 ANDTerm -> BoolTerm .. 122

9.6.10 NOTTerm -> BoolTerm ... 122

9.6.11 EQTerm -> BoolTerm ... 123

9.7 Bindings ... 123

9.8 Parameters ... 124

9.8.1 Parameter -> Named .. 125

9.8.2 ProcessParameter -> Parameter 126

9.8.3 PlanningParameter -> Parameter 126

9.8.4 ProjectParameter -> Parameter .. 126

9.8.5 ProcessVariable -> Parameter .. 127

9.9 Process Frame ... 127

9.9.1 Process -> Named .. 128

9.9.2 ToBeImplemented: Preference .. 130

9.9.3 History Records .. 130

9.10 Process Models ... 134

9.10.1 Process Module -> Variantable 135

9.10.2 Artifact -> Variantable ... 139

9.10.3 StakeHolder -> Variantable .. 141

9.10.4 VerificationModule -> ProcessModule 142

9.10.5 Criterion -> Variantable ... 144

9.11 Requirements & Compliance ... 144

9.11.1 Requirement -> Variantable 145

9.11.2 Complaince -> Variantable ... 146

9.12 Model-Based Processes .. 148

9.12.1 Model -> Artifact ... 148

9.12.2 MetaModel .. 149

9.12.3 MetaModelElement -> Named 150

9.12.4 MetaModelAttribute -> Named 150

9.12.5 MetaModelAssociation -> Named 151

9.13 Tools ... 151

9.13.1 Tool -> Variantable ... 152

9.13.2 Method -> Named ... 153

10 Known Issues .. 153

11 Licenses & Liability ... 154

12 Examples & Further Documentation .. 155

User Manual of Process Modeling Tool Page 5
Version 1.2

1 Introduction

The Process Modeling Tool (PMT) is a tool that supports model-based

process modeling, safety standard compliance as well as the preparation

of safety plans and safety cases via the interface to the verification and

validation tool (VVT). See Section 3 for an overview how PMT fits into the

safety strategy.

The PMT can be used for different purposes:

 Process Modeling, formalization and documentation with

o Parameterized process

o Automated tailoring

o BPMN like notation of processes

o Syntactic and semantic validation of process models

 Compliance with safety requirements and compliance

argumentations (“safety plan”) including GSN visualization

 Preparation of project specific verification and validation (“safety

case”) including interface to Verification and Validation Tool (VVT)

 Project Management Tool: planning and status management of

projects (including process instances)

 Report generators for

o Compliance reports

o Process reports

o Verification and Validation Report (see VVT)

This user manual describes the PMT tool with the following aspects:

 A glossary of the used terms in Section 2.

 The safety strategy in which PMT can be used in Section 3.

 The compliance Method, see Section 4.

 The used graphical process notation, see Section 5.

 The Installation, see Section 6.

 The user interface of PMT, see Section 7.

 The Features of PMT, see Section 8.

 The details of the model, see Section 9.

 The known bugs of PMT, see Section 10.

 Licenses are described in Section 11.

 References to examples & further documentation can be found in

Section 12.

User Manual of Process Modeling Tool Page 6
Version 1.2

2 Glossary

The following abbreviations are used in the document.

 AOC: Anomalous Operating Condition

 Artifact: Element exchanged between processes

 BPMN: Business Process Model and Notation

 CR: Compliance Report2

 CT: Construction Task (during QKit creation)

 GSN: Goal Structuring Notation

 KB: Known Bug

 LCR: Library Classification Report

 LQP: Library Qualification Plan

 LQR: Library Qualification Report

 LSM: Library Safety Manual

 LTG: Library Test Generator

 PCCP: (Development) Process Compliance Check Plan

 PCCR: (Development) Process Compliance Check Report

 PMT: Process Modeling Tool

 Process Module: modular tasks in the process

 PT: Preparation Task (before QKit creation)

 Role: see Stakeholder

 QKit: Qualification Kit

 QP: Qualification Plan (general), can be LQP or TQP

 QR: Qualification Report (general), can be LQR or TQR

 QST: Qualification Support Tool

 SEOOC: Safety Element Out Of Context according to ISO 26262

 SM: Safety Manual (general), can be LSM or TSM

 Stakeholder: abstract person taking over responsibilities in the

process

 SWC: Software Component, e.g. a library3

 TAU: Test Automation Unit

 TCA: Tool Chain Analyzer

 TD: Tool Detection (part of TCL computation according to ISO

26262)

 TCL: Tool Confidence Level (according to ISO 26262)

 TCR: Tool Classification Report

 TI: Tool Impact (part of TCL computation according to ISO 26262)

 TQL: Tool Qualification Level (according to DO-330)

2 Do not confuse with Classification Reports LCR and TCR.

3 Note that libraries can be both changes and unchanged software components.

User Manual of Process Modeling Tool Page 7
Version 1.2

 TQP: Tool Qualification Plan

 TQR: Tool Qualification Report

 TSM: Tool Safety Manual

 V&V: Verification and Validation

 Verification Module: special form of Process module used to verify an

artifact in the process

 VVP: Verification and Validation Plan

 VVR: Verification and Validation Report

 VVT: Verification and Validation Tool

 VT: Verification task (after QKit creation)

User Manual of Process Modeling Tool Page 8
Version 1.2

3 Safety Strategy

PMT is the first step towards safe and efficient development processes.

Safety is planned using PMT, by applying the compliance method, see

Section 4. Efficiency is achieved using automatization with a safe tool

chain and safe libraries. Safety of tools is achieved by classifying the tools

(using the Tool Chain Analyzer) and by qualifying critical tools using

qualification Kits. Safety of libraries is achieved by qualifying the used

functions using library qualification kits. More information about the other

qualification tools (TCA, QKits, VVT) can be found in

http://www.validas.de/en/tools/.

Figure 1: Safety Processes and Support Tools

Figure 1 shows how the Validas Tools build the interface between a safe

development process and the safety case (TCA and QKit being the

commercial tools, and PMT, VVT the free utilities that complete the tool

chain):

1) PMT is used to plan the process and to show its compliance with the

safety standard. The generated process description can be used

http://www.validas.de/en/tools/

User Manual of Process Modeling Tool Page 9
Version 1.2

within development process, e.g. as reference, while the generated

compliance report is the main part of the safety plan. Also the check

list templates for Verification and Validation are generated from PMT

and will be used later from VVT to ensure safety of the project.

2) Once the process is described in PMT the corresponding tool chain

can be developed and modeled using the tool chain analyzer. In a

future version TCA will be able to automatically create a model from

the process model (that already contains a coarse tool model), e.g.

by creating a use case in the tool chain for every process step that

is linked to a tool in PMT. TCA can be used to document and analyze

the tool chain and to make it safe by classifying the tools and

providing safety manuals for the uncritical tools, i.e. those tools that

can be used sufficiently carefully without having manual extra work.

Also other tools can be classified as uncritical, e.g. by enriching the

process with extra activities.

3) The critical tools, i.e. the tools that the user wants to rely on the

function without checking its outputs can be qualified using so called

qualification kits. QKits typically base on validation, i.e. testing the

tool and can for example be easily build using the Validas

framework. QKits contribute to the safety case with all required

documents, mainly the tool qualification report and generate a

tailored safety manual covering exactly the use cases of the tools.

4) At the end of the development process (or after some development

steps) the product has to be verified and validated. This is done

using the Verification and Validation Tool. It provides the check lists

to the project, manages their results and generates the Verification

and Validation Report to complete the safety case.

Since classification (TCA) and qualification (QKit) is the core business of

Validas and since PMT is the entry ticket to safe development (including

classification and qualification), Validas decided to make it freely available

to the world (including VVT).

User Manual of Process Modeling Tool Page 10
Version 1.2

4 Compliance Method

The applied compliance method is model based. It bases on a

parameterized model that is used to model the following things:

 Requirements from safety standard (or from somewhere else),

 Development process of the qualification kit (or something else),

 Compliance argumentation,

 Verification actions and

 Parameters.

The key ideas of the compliance method are:

1) Every requirement is linked to two things:

a. an element in the process that implements it and

b. a verification step in the process that verifies the

corresponding artifact

2) Project parameters: Every project is different, even if it follows the

same process. Those differences are modeled using parameters in

the process. The parameters are instantiated with values during the

project. In our qualification projects typical parameters are “TEST”

or “FEATURE”.

Parameters can be used for project management, e.g. qualifying 20

features and creating 100 tests, but parameters have to be used for

verification and validation in order to ensure requirement (and standard)

compliance.

The compliance method is therefore structured in two parts

1) The process specific part, that is the scheme for all projects.

2) The project specific part, which is just an instantiation of the process

by defining the parameters and performing V&V for all instances as

pre-scribed within the process.

The process (part 1 only) can be assessed independently. For example

Validas has a TÜV certification for the processes of Tool qualification (since

2018), based on this compliance method.

This compliance documentation is, together with the process report, the

basis for a process certification for the process.

The compliance method is graphically shown in Figure 2. The compliance

is achieved in the following steps:

1) Process Part. We use the Process Modeling Tool (PMT) for this:

a. Model or select requirements for the process.

b. Model or configure the process (based on existing processes),

including the verification steps.

User Manual of Process Modeling Tool Page 11
Version 1.2

c. Argue the compliance of the process by providing for every

requirement at least one implementing process and one

verification action.

d. Generate the process report (PR).

e. Generate this compliance report.

f. Generate the verification and validation plan.

2) Project specific part (only the verification and validation, which is

essential for the compliance). We use the V&V Tool VVT for this

a. Instantiate the Verification and Validation Plan (VVP) by

i. Assigning concrete names to stakeholders that perform

V&V

ii. Import the project parameters. For qualification projects

based on Validas Tool Chain Analyzer this can be done

by exporting the parameters from the TCA tool into an

Excel table)

b. Perform V&V by going through all checks for all instances of

the parameters (this can be done using Excel Export & import

of VVT)

c. Check Completeness and generate the Verification and

Validation Report (VVR) using VVT.

The safety plan is the description of the process including the compliance

argumentation and the safety case is the safety plan including the V&V

report with the verification results.

User Manual of Process Modeling Tool Page 12
Version 1.2

Figure 2: Compliance Method

As notation for the compliance argumentation we use a GSN-like (Goal

Structuring Notation) notation with the following elements (see Figure 3).

Figure 3: Used Goal Structuring Notation (GSN) Subset

For example an argumentation (“Compliance”) to meet a code coverage

requirement by good test cases verified in two steps with four criteria

could look like depicted in Figure 4.

Figure 4: Example Compliance Argumentation using GSN

User Manual of Process Modeling Tool Page 13
Version 1.2

5 Process Notation

The used process notation is based on a model and consists of the

following elements

 StakeHolder: A person responsible for Processes and Artifacts

 ProcessModule: A modular task/process with input & output artifacts

 Verification Module: a special module that verifies an artifact and

checks that a requirement is satisfied by asking some review

questions (called “Criteria”)

 Model: a special form of an Artifact, allowing to define which

modeling elements (e.g. Tool, Feature,.. in TCA Models) are

mandatory (e.g. Tool-Name) and which are optional (e.g. Feature-

Comment).

 Parameter: A parameter of the process indicating that the process

has to be iterated for all values of the parameter. Parameters are

used to tailor the process and to instantiate it. Parameters can be

bound to values or list of values using Bindings. There are the

following parameters:

o Process Parameter: Describes a tailoring parameter, typically

instantiated with concrete values. All elements that have

variant terms with process parameters evaluating to false are

removed.4

o Project Parameter: A Parameter indicating instances of the

process, typically instantiated with lists of values indicating

that the process modules have to be repeated for each value

of the parameter

o Process Variable: Describing a condition in the process with

alternative following processes. Process variables are not

instantiated but determined when executing the process, e.g.

“<REVIEW_OK> -> YES -> Release”

All elements are contained in a container called Process.

4 This process has already been tailored, such that all process variables have values and all
unused process elements are removed.

User Manual of Process Modeling Tool Page 14
Version 1.2

Figure 5: Main Process Description Elements and Relations

The graphical images are using a Business Process Modeling Notation

BPMN like notation with “swim-boxes” instead of “swim-lines” to improve

graphical layout.

The following graphical views are supported:

 Process View: describes the process modules, see Section 5.1.

 Artifact view: describes the structure of artifacts and their use, see

Section 5.3.

 Role View: describes the roles with their responsibilities, see Section

5.4.

5.1 General

The graphical notation visualizes the following elements:

Figure 6: Visualization of Process Model Elements

User Manual of Process Modeling Tool Page 15
Version 1.2

The graphical notation visualizes the following relations between

elements:

Figure 7: Relations between Model Elements

5.2 Process View

The process view describes a Process Module / Verification Module using

the graphical notation of Section 5.1. The name of the selected module is

written in double size. An example can be found in Figure 8.

It shows the process module “Develop Safe Product” and its sub-processes

grouped into the swim-boxes of the involved stake holders.

Figure 8: Process View for “Develop Safe Product”

In addition to this input output related modeling style, processes can also

be modeled without artifacts using a sequential style by using the

after/before relation as shown in the example in Figure 9. This shows a

User Manual of Process Modeling Tool Page 16
Version 1.2

simple process “Sell Product” as interaction between a sales manager and

a customer.

Figure 9: Sequential Process Module View for “Sell Product”

5.3 Artifact View

The artifact view describes an Artifact or Model using the graphical

notation of Section 5.1. The name of the selected Artifact or Model is

written in double size. An example can be found in Figure 10.

It shows the user manual and its content (here only the introduction) and

that it is used from the product manager for development.

Figure 10: Artifact View for “User Manual”

User Manual of Process Modeling Tool Page 17
Version 1.2

5.4 Stake Holder View

The stake holder view describes a Stakeholder using the graphical

notation of Section 5.1. The name of the selected Stakeholder is written in

double size. An example can be found in Figure 11. It shows the two

hierarchic processes owned by the Product Manager to produce a product

and his responsibilities for the specification.

Figure 11: Stakeholder View for "Product Manager"

User Manual of Process Modeling Tool Page 18
Version 1.2

6 Installation & Starting PMT

To install the tool just unzip the distribution into a program folder in which

you have write permissions and ensure that the PMT can create a

workspace directory there, i.e. that there are no root privileges required

to create the workspace there.

Furthermore, Java 1.8 (JRE) has to be installed on your computer and in

the path, since new versions of PMT do not contain jre any more due to

legal restrictions.

The ZIP file contains the PMT application: “ProcessModelingTool.exe” (see

Figure 12).

Figure 12: Distribution of Process Modeling Tool

In the plugins directory of the distribution, there are folders

“de.validas.spm.pmt.documentation” containing this documentation.

Furthermore, there is a plugin “de.validas.spm.pmt.examples” with some

example models.

You can check the version of PMT in the About-Box see Figure 14 that can

be started in the Help-Menu as shown in Figure 13

Figure 13: Starting About Box

User Manual of Process Modeling Tool Page 19
Version 1.2

Figure 14: About Box with PMT Version

Note we document here only the PMT specific features and not general

Eclipse mechanisms like the “Show Active Key Bindings” as visible in the

Figure 13.

Requirements: If you want to include the automatically generated images

in the report you have to install GraphViz. GraphViz is open source graph

visualization software which is used by the PMT to generate the images.

You can find the software and the installation manual at

http://www.graphviz.org.

Note: GraphViz (dot.exe) has to be added into the search path of your

system such that PMT can find it.

Figure 15: Splash during starting up of the Process Modeling Tool

After some seconds, the empty PMT starts (see Figure 15) and the user

interface is ready for modeling. Initially it will be empty as depicted in

Figure 16.

http://www.graphviz.org/

User Manual of Process Modeling Tool Page 20
Version 1.2

Figure 16: Empty PMT

Figure 17: Create new PMT Model

User Manual of Process Modeling Tool Page 21
Version 1.2

To create new PMT models use the File -> New -> PMT Model dialog, see

Figure 17 and select “Process” as main element, see Figure 18.

Figure 18:Select File and Model Object: Process

User Manual of Process Modeling Tool Page 22
Version 1.2

7 User Interface

The PMT user interface provides some standard menus. Main functionality

is performed by actions that are directly started in the model tree

browser.

PMT models are organized in a tree structure (see Section 9) but can be

displayed with many different views. Some general actions (like opening

views or setting preferences) are started from the menus in PMT, most

actions are “popup actions” and are started directly from the tree browser.

Therefore, the user interface of PMT has the following components:

 Tool Menus, see Section 7.1,

 Tree Browser, see Section 7.2,

 Property Editor View, see Section 7.2.4,

 (Graphical) Process Module View, see Section 7.3,

 (Graphical) Compliance View, see Section 7.4,

 Projection View, see Section 7.5,

 Diagnostic View, see Section 7.6.

Figure 19 shows the views of the PMT. The tree browser is located on the

upper left part, the property editor view on the right side. The other views

are located at the right lower corner. All views can be modified and

resized using the typical Eclipse mechanisms.

Figure 19: Views of PMT

User Manual of Process Modeling Tool Page 23
Version 1.2

7.1 Tool Menus

PMT offers the following tool menus (see Figure 20):

 File Menu, see Section 7.1.1,

 Edit Menu, see Section 7.1.2,

 PMT Editor Menu, see Section 7.1.3,

 Window Menu, see Section 7.1.4,

 Help Menu, see Section 7.1.5,

This section describes the offered functions shortly (most functions are

default Eclipse modeling functions that are from the EMF).

Figure 20: PMT Menus

7.1.1 File Menu

The file menu allows to open & close files and to create new files with PMT

models. These are basic tool functions and work as expected.

Only important aspect is here, that for creation of a new model the

function New -> PMT Model has to be chosen and the Root element

“Process” should be selected, as described in Section 6.

Figure 21: File Menu of PMT

User Manual of Process Modeling Tool Page 24
Version 1.2

7.1.2 Edit Menu

The edit menu allows to do simple editing commands (see Figure 22). All

of them are available using standard shortcuts.

Figure 22: Edit Menu

7.1.3 PMT Editor Menu

The PMT Editor menu offers PMT Editing features, see Figure 23. The

features are context dependent and a subset of the popup action menus.

Their functionality is described in Section 7.2.

Figure 23: Tools Menu

However, since those functions are also available in the tree browser this

menu is likely to be removed in future versions of PMT.

7.1.4 Window Menu

The window menu (see Figure 24) offers some useful functions regarding

the window handling of TCA:

1) Open in New Window: opens PMT in a new window

User Manual of Process Modeling Tool Page 25
Version 1.2

2) Preferences: opens the preference dialogs, see Section 8.8.

Figure 24: Window Menu

7.1.5 Help Menu

The help menu (see Figure 25) shows the about box of PMT and the active

key bindings that might help non-Eclipse experts to get familiar with

generic Eclipse features.

Figure 25: Help Menu

Further helpful information (that should be accessible here in future

version of PMT) are:

 The PMT Examples in the examples plugin folder,

 This user guide, available in the documentation plugin.

7.2 Tree Browser

The tree browser allows to browse and edit the model structure and to

start some actions on the model element with the right mouse button.

The available modeling elements are described in Section 9, the actions in

the following sub-sections.

Note there are several actions inherited from Eclipse that are currently

useless in PMT and might be removed or implemented in future versions

of PMT, e.g. “Team –>“, “Compare With->”, “Replace With ->”.

User Manual of Process Modeling Tool Page 26
Version 1.2

Figure 26: Tree Browser

Figure 26 shows the tree browser and the popup menu of the right mouse

button click. It allows to add new elements to the model using the

function “New Child”. The children that can be added depend on the

User Manual of Process Modeling Tool Page 27
Version 1.2

selected model element and on the activated extensions. The available

elements and their structure are explained in Section 9.

Furthermore, also other actions can be started using the popup menu, for

example the report generation, export, import etc. Some actions support

multiple selection.

The following popup actions can be activated by right-clicking on the

elements in the browser. Note that some actions are gray. They can only

be activated if the corresponding model extensions are activated.

7.2.1 On Various Elements

The following actions are applicable on several elements and have

comparable behavior:

 New Child: Create a new child element. See Section 9 for the meta

model that describes the possible elements.

 New Sibling: Create a new sibling element. See Section 9 for the

meta model that describes the possible elements.

 Cut: Cut the selected element from the browser into the copy buffer.

 Copy: Copy the selected element into the copy buffer.

 Paste: Paste the element from the copy buffer into the selected

element.

 Delete: Delete the selected element(s).

 Validate: The validate action is described in Section 8.5.1.

Furthermore there are some PMT specific actions available on several

elements:

7.2.1.1 Show DOT (Graphviz)

This action is available on the following elements:

 ProcessModule

 Artifact

 Stakeholder

 Requirement

 Compliance

It shows the source code that is used to compute the Process and the

compliance view, depending on the selected element as shown in Figure

27. It can be used for example in http://www.webgraphviz.com/ to

modify or debug the graphs.

http://www.webgraphviz.com/

User Manual of Process Modeling Tool Page 28
Version 1.2

Figure 27: DOT Representation of the Graphical View

7.2.1.2 Export DOT (Graphviz)

Similar to the above “Show DOT (Graphviz)” actions in previous section,

except that it saves the text into a file.

7.2.1.3 Infer and Set Types

Parameters, Variables and Terms have types that should be specified to

ensure correct validation and evaluation of the terms. This can be done

automatically using the PMT action “Infer and Set Types”, which is

available on all “Named” elements and all “Terms” and “Bindings”. Once

started (see Figure 28), it will create a textual report on which inferences

it did as shown in Figure 29.

User Manual of Process Modeling Tool Page 29
Version 1.2

Figure 28: Start “Infer and Set Types”

Figure 29: Result of “Infer and Set Types”

7.2.1.4 Check Types

The “Check Types” action can be started on all elements and checks the

types in the selected element(s) and in all contained elements.

User Manual of Process Modeling Tool Page 30
Version 1.2

Figure 30: Result of type checking

7.2.2 On Process Element

On Process elements the following popup-actions are available (see Figure

31):

The following actions are Project specific:

 Check Project Status: computes the project status, see Section 8.2.11.

 Export Parameter Values To Excel: Exports the parameter values to

excel, allowing them to be changed in Excel

 Import Parameter Values from Excel: imports parameter values from

Excel and creates (or updates) binding for the parameters.

User Manual of Process Modeling Tool Page 31
Version 1.2

Figure 31: Popup Menu on Project

7.2.3 On ProcessModule Element

On ProcessModule elements the following popup-actions are available (see

Figure 31):

The following actions are Project specific:

 Check Project Status: computes the project status, see Section 8.2.11.

 Reset Project Specific Data: Resets project specific data

(ProjectRelevant, ProjectComment, Effort, NumberOfInstances,

PlannedStartDate, PlannedEndDate, EndDate) to default values.

User Manual of Process Modeling Tool Page 32
Version 1.2

 Export Development Interface (Excel), see Section 8.6.3.4

 Export Offer (Excel + Word), see Section 8.6.3.5

 Export Parameter Values To Excel: Exports the parameter values to

excel, allowing them to be changed in Excel

 Import Parameter Values from Excel: imports parameter values from

Excel and creates (or updates) binding for the parameters.

Figure 32: Popup Menu on ProcessModule

7.2.4 On Model Element

On Model elements the following popup-actions are available (see Figure

123):

The following action is Model specific:

 Import Ecore Model: This allows to import ecore models to support

modeling of model-based processes, see Section 8.2.2.

User Manual of Process Modeling Tool Page 33
Version 1.2

Property View:

The property view shows the properties of the element that is selected in

the tree browser. There are two forms of property views in PMT

1) The classical EMF view, which shows one line for each property (see

Figure 34)

2) An EMF Forms based with groups of properties that can be collapsed

(see Figure 35)

Using the small icon on the right top, the views can be switched (see

Figure 33).

Figure 33: Switch Property Views

Figure 34: Classical EMF Property View (of Process)5

5 Note: Issue#39 states a problem with EMFForm of Process, that is not collapsing as
expected

User Manual of Process Modeling Tool Page 34
Version 1.2

Figure 35: EMF Forms Property View of Process Module

The EMF Forms of all elements have the similar property categories that

are represented by “collapsible groups”, see Figure 35.

 BASIC: this category contains the most frequently used basic

properties like name description of the element.

 EXTENDED: less frequently used properties that do not fall under a

specific other category

 LAYOUT: properties to impact and customize the generated layout of

the process and compliance view

 TAILORING: All properties required for automated tailoring:

Parameters, Bindings, but also types and their declarations

 COMPLIANCE: properties for the compliance with safety standards or

requirements

 MANAGEMENT: properties to manage the process, e.g. efforts, dates,

states,…

 MODELING: properties for model-based processes, e.g. meta-models

and process conditions.

7.2.5 On Requirement Element

In order to change the “Recommended From” and “Recommended To”

properties of many requirements at once, on the Requirement the

following actions are available: “Set Recommended From” and “Set

Recommended To”. Both can be started using the right mouse popup

menu as shown in Figure 36. Note that they work recursively for all

contained requirements and it is manually required to save the model

afterwards.

User Manual of Process Modeling Tool Page 35
Version 1.2

The resulting changes are listed in the result dialog as shown in Figure 38

Figure 36: Starting Set Recommended Actions

Figure 37: Enter New Safety Level Dialog

Figure 38: Result of Set Recommended Actions

Also available on Requirements: Generate Compliance Structure

Action, see Figure 39 that generates a compliance template tree for the

selected Requirement including the references to the requirement and

containing an argumentation pattern that should be extended for the

atomic requirements.

User Manual of Process Modeling Tool Page 36
Version 1.2

Figure 39: Generate Compliance Templates Action

Figure 40: Confirmation of Compliance Structure Generation

After confirming the generation question (see Figure 40) the result (see

Figure 41) s generated. This can be moved into the process modules for

refinement.

Figure 41: Generation Result Example

User Manual of Process Modeling Tool Page 37
Version 1.2

7.2.6 On Parameter, Binding, EnumValue and EnumType Elements

Since tailoring terms are not bi-directional linked, it is not clear, where

they are used. For Example consider you have an EnumType TestResult =

PASS / FAIL / ERROR and you want to determine in which elements

(tailoring terms) it is used.

This finding of all references to a given Parameter, Binding, EnumValue or

EnumType can be done with the so called “Show References” Action which

is available on the references elements only.

The result of the action lists all occurrences of this element in the

complete model (independent from tailoring). The action can be started

using the right mouse popup menu as shown in Figure 42.

Figure 42: Starting the Show References Action

The result is displayed in a list text dialog as shown in Figure 43

User Manual of Process Modeling Tool Page 38
Version 1.2

Figure 43: Result of Show References Action

7.3 Process Module View

The process module view shows the graphical representation of the

process using the graphical notation defined in Section 5, depending on

the current selection. It is working for “ProcessModules”, “Artifacts” and

“StakeHolders” and shows their process view.

Important to note is that it requires graphviz (dot.exe) to be in the path

otherwise it will not work (see Section 6 for installation). Furthermore

process modules require to have a stakeholder assigned in order that

they can be graphically visualized, otherwise the graphic will just be

ignored.

PMT generates the images using graphviz and stores them temporarily in

files (.gv and .png) into a temporary file directory pointed by the variable

“java.io.tmpdir”/PMT, so for example:

C:\Users\oscar\AppData\Local\Temp\PMT. Here you can find also the

images for further usage. However the preferred way to access the

sources for graphviz is definitely the “Show DOT (Graphviz)” action that is

available on the elements having a graphical view, see Sections 7.2.1.1

and 7.2.1.2.

User Manual of Process Modeling Tool Page 39
Version 1.2

7.4 Compliance View

The compliance view shows the compliance argumentation using the Goal

Structured Notation (GSN), see https://www.goalstructuringnotation.info/

for more information.

It does not show the complete tree of arguments, since most

requirements are hierarchically and this would lead to too complex

images. It just shows one hierarchy level. The generated compliance

report contains all compliance views and is therefore complete.

Like in the process module view the graphs are generated in the

temporary directory and can be exported using SHOW and export actions,

see Sections 7.2.1.1 and 7.2.1.2.

7.5 Projection View

The projection view shows the result of model projection. Model projection

is an information on the model or on selected parts of it. Model projection

shows all projected values grouped by attributes and classes, such that it

can be used as statistical information (e.g. the number of modeled

processes) or to find a specific element by name.

https://www.goalstructuringnotation.info/

User Manual of Process Modeling Tool Page 40
Version 1.2

Figure 44: Model Projection View

The Model Projection, see Figure 44 view has a root () for the selected

element(s) that is/are projected. The root contains the type and the name

of the projected element and the number of contained elements in

brackets. Below there are the different projection groups () listed:

 The package group: shows the projection split by packages

 The classes group: shows the projection split by the classes. In the

classes group, every class is listed with the number of properties

 The properties group (if configured in the PMT model projection

preferences). It contains all properties, independently from the classes,

e.g. if an Element with a given property Name X is searched, it will be

found there, independently if it is a Process, Artifact, Tool or any other

element with this property.

User Manual of Process Modeling Tool Page 41
Version 1.2

Under every class (), the properties () are listed. There are two kinds

of properties: attribute and relation properties. Attributes are listed by

their names, e.g. “Comment”, “Deactivated”, Relations are listed by

their type, e.g. “Containment Process to Tool” or “Reference to

Stakeholder”. Both have their quantities in brackets. Empty or “null”

values/references are not counted. Unlike Attribute properties, relation

Properties do not have values listed, but model projections () of the

related elements, see Figure 45

Figure 45: Model Projection of Relations

For every property, the values () are listed that have been found during

projection, e.g. “true (13)” in Figure 47. Below that, the values pointers

() to the occurrences are listed with their types and names, e.g.

“MetaModelElement: tcm.Attribute”. The pointers can be used with a

double click to navigate in the browser to the elements with that value.

On the right upper corner there is an icon that can be used to freeze the

current model projection. Otherwise model projection will always be

recomputed based on the current selection in the browser.

User Manual of Process Modeling Tool Page 42
Version 1.2

Figure 46: Model Projection General Preferences

Model projection can be configured in the preference pages, see Figure 46.

Figure 47: Global Attribute Property Projection Group

It supports the following two settings:

 Display global attribute properties: If this is selected, there will be a

global attribute properties projection group in the root of the

projection, see Figure 47. It contains all attribute properties of all

classes.

User Manual of Process Modeling Tool Page 43
Version 1.2

 Sort attributes by number of occurrences: If this is selected, the

sorting in the model projection view is changed accordingly. Default

sorting is alphabetically, but it can be changed to list the most

frequently found elements first (in a descending order).

7.6 Diagnostic View

The diagnostic view (see Figure 48) shows the results of the last

performed model validation. It can be used to navigate to the elements

that violates a rule.

Note it is not automatically updated, except when running validation.

Figure 48: Diagnostic View of Last Validation Results

User Manual of Process Modeling Tool Page 44
Version 1.2

8 Features of PMT

PMT has the following features that are described in this section:

 Terms and Types

 Process Modeling

 Validation

 Interfaces

 Report Generators

 Preferences

 Scoping

8.1 Terms and Types

PMT is based on a mathematical model of terms allowing to automatically

check consistency and to automatically evaluate terms, for example to

tailor variant terms and conditions in the process model. The model is

inspired by the second order lambda-calculus consisting of terms and

types, being constructed by constant, functions and variables.

Figure 49: Terms in PMT

While Figure 49 looks quite complex, terms are very simple. They can

consist only of the following elements

 Constants

 Boolean and list terms

 References to modeled elements

Boolean terms can be created in the allowed places (Variantable

elements) in the tree browser by inserting new elements using the “New

Child” action (or by copy & pasting existing terms). Note that the terms

User Manual of Process Modeling Tool Page 45
Version 1.2

have to be created according to their logical structure, starting with the

root node. For example if a disjunction term shall be created it has to be

done as shown in Figure 50. The arguments for all terms are specified in

the meta-model section 9.5.

Figure 50: Creating new Terms

We demonstrate terms using an example term / condition:

ISO26262  LIST_OF_STDS || IEC61508  LIST_OF_STDS

This term is modeled as depicted in Figure 51: The tree-browser shows

the tree structure of the term: It consists of an OR-Term with two similar

sub-terms, constructed by an “In List” () Boolean operator and two

arguments: first a reference to a value of an enumeration and a reference

to a process parameter “LIST_OF_STDS”.

Figure 51: Example Term

This example shows that the term

ISO26262  LIST_OF_STDS || IEC61508  LIST_OF_STDS

is a boolean term, consisting of two sub-terms and that ISO26262 and

IEC61508 are enumerated values that are referred within this term as

well as the list of standards, which is a reference to process variable.

In order to evaluate the term the value of the process variable

LIST_OF_STDS has to be defined. This can be done by a so called

“Binding”, that assigns (“binds”) a concrete value to the variable.

User Manual of Process Modeling Tool Page 46
Version 1.2

Bindings can be contained in Processes (global) and ProcessModules

(local). They have a reference to a parameter (to which the values are

assigned) and they contain the value, see Figure 52.

Figure 52: Binding Model

The bindings are displayed in PMT tree browser, especially the contained

values, see Figure 53. Note that in the above example the value for the

parameter “LIST_OF_STDS” is a list value (constructed by the “ListTerm”

Term) with one value (reference to an EnumValue, as explained above).

Figure 53: Binding Representation in Tree Browser and Property View

The overall example of terms (including definition and binding) looks as

shown in Figure 55 in the tree browser (It is also contained in the

Example/Documentation/Terms.pmt file).

In addition to the Variant-Term and the Binding it also contains the

definition of the used types:

1) The EnumType Standards (with all EnumValues as children)

2) The ListType “ListOfStandardTypes”, which contains a reference to

the “BaseType” of the list (“Standards”), see Figure 54.

Figure 54: Property View of ListType

User Manual of Process Modeling Tool Page 47
Version 1.2

Figure 55: Complete Term Example

The types in PMT consist of three different types (see Figure 56):

 Base Types (like Boolean, Integer, Double)

 Enumeration Types: with defined constant values (see “Standards” in

above example)

 List Types: describe the type of lists over base types (see

“ListOfStandards” in above example).

Figure 56: Model of Types

User Manual of Process Modeling Tool Page 48
Version 1.2

Figure 56 also shows the place in which types can be defined:

 Process: contains global types

 ProcessModule: contains local types

Note: if PMT infers types it also creates the default global types: “String”,

“Boolean”, “Integer” and “Double" (see Figure 56). The corresponding

List-types are not automatically generated and have to be created

manually from the user in case they are needed.

Evaluating terms means computing their values. This is only possible for

terms that have no “unbound” variables, e.g. parameters without

bindings. PMT evaluates terms according to the following rules:

 Constants are evaluated to themselves, i.e. constants are already

values.

 Parameters are evaluated to the evaluation of the bound terms. PMT

searches for bindings local first and then going upwards until the global

Bindings are considered.

 If parameters have no bound values they cannot be evaluated, this

might occur for example in a parameterized process that has not been

tailored by binding the variables.

 List-Terms are evaluated by evaluating all elements in the list and

creating a new ListTerm with the evaluated arguments.

 InList terms are evaluated by evaluation of both arguments and then

creating a result Constant with value True if the term is in the list,

otherwise False.

 Boolean Terms are evaluated by lazy evaluation (but do not catch

exceptions due to un-evaluatable arguments)

o EQTerm(x,y) evaluates to TRUE, if x and y evaluate to identical

terms.

o NOTTerm(x) evaluates to TRUE, if x evaluates to FALSE and vice

versa.

o ORTerm(x,y) evaluates to TRUE, if one argument evaluates to

TRUE (Evaluation order is left to right), otherwise to FALSE.

o ANDTerm(x,y) evaluates to FALSE, if one argument does not

evaluate to TRUE (Evaluation order is left to right), otherwise to

TRUE.

Evaluation of terms can be triggered using the Evaluate Variants Action on

Variantable elements, resulting into a dialog showing the evaluation

results as shown in Figure 57.

User Manual of Process Modeling Tool Page 49
Version 1.2

Figure 57: Variant Term Evaluation Result (Evaluate Variants Action)

8.2 Process Modeling

The process model consists of several aspects:

 Processes

 Requirements

 Model-Based Processes

 Compliance

 Reuse & Linking

 Tailoring

 Tools

 Project Management

8.2.1 Processes

Processes are modeled using the following elements

 ProcessModules: Describe activities / tasks, typically producing outputs

from inputs. ProcessModules should be named starting with verbs, e.g.

“Run Tests”. Verification Modules are a special form of ProcessModules

that perform verification activities to verify artifacts.

 Artifacts: Represent the data in the processes that are used as input /

outputs from the ProcessModules

 StakeHolder: Are responsible for artifacts and process modules

There are two modes to describe a process

 Artifact-based

 Artifact-free

In the artifact-based modeling style every process module has to specify

the used artifacts (input & output). The artifacts then define a sequence of

the processes, see Figure 58.

In the artifact-free modeling techniques the user has to specify the

sequence of processes, see Figure 59. Artifact-free modeling can only be

done if the artifacts are implicitly known. For Safety Related Processes we

recommend and use Artifact-based modeling, also because those

User Manual of Process Modeling Tool Page 50
Version 1.2

processes can be managed better, see the status of artifacts in Section

8.2.11.

Note that Stakeholders are always required in the model and without

responsible stakeholder no process view can be generated.

Figure 58: Artifact-Based Modeling

Figure 59: Artifact-Free Modeling

Note that ProcessModules can be nested hierarchically to keep processes

manageable and viewable.

User Manual of Process Modeling Tool Page 51
Version 1.2

An important request, required by most safety standards is the

consistency of the processes. To achieve this consistency we mainly

require that the inputs and outputs of a hierarchic process modules are

used and created by corresponding sub-processes. This means that all

artifacts that are used/produced somewhere within the process have to be

input/output of the process (except temporary artifacts). In order to avoid

numerous inputs/outputs of processes, artifacts can be grouped

hierarchically as well.

Consider the example in Figure 60: The left part shows the inner view of

the process “Main” that creates two outputs from two inputs by two sub-

processes, the right part shows the outer view of the process “Main” with

all inputs/outputs of the inner view.

Figure 60: Interface Consistency: Flat Model

The same example can be consistently modeled using hierarchic artifacts.

Figure 61 (hierarchic) shows on the left side the same situation as

depicted in Figure 60 (flat), except that the process is called “Hierarchic”

and used the hierarchic artifact A (contains A1 and A2) as input and

hierarchic artifact B (contains B1 and B2) as output, which simplifies the

model on the right side significantly.

This hierarchic modeling principle has also the advantage of supporting

more abstract processes on higher level and allowing a detailed process

User Manual of Process Modeling Tool Page 52
Version 1.2

model in lower level by remaining consistent. The example can be found in

PMT example directory in the file “InterfaceHierarchy.pmt”.

Figure 61: Interface Consistency: Hierarchic Model

8.2.2 Model-Based Processes

Model-based processes can be modeled in the same way as normal

processes (see previous section), for example naming an artifact “Model”

or “TestModel”. However most modeling tools support different modeling

styles, by using different modeling elements in different process phases.

For example State Charts and Sequence diagrams can be both described

within UML. Therefore a detailed process description should differentiate

between the different UML models. Furthermore it should be possible to

describe the modeling process precisely, for example to specify which

modeling elements belong to state charts and sequence diagrams and

which not.

All this can be achieved by allowing the process specification to use and

refer to the Meta-Model of the used modeling tools. For example in a state

chart model state charts and transitions are required and other modeling

elements (labels, junctions,..) are optional.

PMT supports specification of models using meta-models with the

following modeling elements:

 Model: specialization of Artifact

User Manual of Process Modeling Tool Page 53
Version 1.2

 MetaModel: Container for Meta-Model elements

 MetaModelElement: Elements of the meta-model, e.g. State, Transition

 MetaModelAttribute: Attributes of meta model elements, e.g. Name,

Action, Condition

 MetaModelAssociation: Association between meta model elements, e.g.

input-transition

Figure 62: Modeling of Model-Based Processes

The main specification of models are the two relations “Mandatory” and

“Optional” from the Model to the different elements of the meta model.

Note that ensuring that the models are built according to the specification

is not task of the PMT tool, but of the modeling tools. PMT focusses on the

specification of the models.

Since creating a detailed meta model can be much work, PMT allows to

import existing meta-models from other Eclipse-based tools (“Ecore

Import”), see Section 7.2.4.

An example of a model-based artifact is specified in Figure 63. It shows a

PMT Model frame that consists of a process element with a name that can

contain all elements. In Addition the frame can contain stakeholders and

tools, but this is optional.

User Manual of Process Modeling Tool Page 54
Version 1.2

Figure 63: Model Frame in PMT Models

More details can be found in the meta-model Section.9.12.

8.2.3 Requirements

Requirements are mainly hierarchically. Therefore they are modeled

hierarchically as a tree. References to other requirements

(“RequiredRequirements”) are also supported. Note contained

requirements do not need to be modeled as requirements, they are

automatically required.

Important is the traceability of the requirements model to the original

requirements. This can be modeled using IDs. Figure 64 shows the

structure of the requirements in the ModuleTest example.

User Manual of Process Modeling Tool Page 55
Version 1.2

Figure 64: Requirements Example

Note that there are also extended properties that allow to specify the

mandatory requirement risk levels, see Figure 65. However for automated

tailoring those are not supported. We recommend to use the more general

and powerful principle of Variant-Terms that can be automatically

evaluated, see the “ORTerms” in Figure 64 for example that describe

Variant Terms in a formal way.

User Manual of Process Modeling Tool Page 56
Version 1.2

Figure 65: Extended Requirement Properties

8.2.4 Compliance

Compliance modeling consists of two parts

1) Claiming requirements

2) Arguing compliance

Showing/Proving compliance can then be done using the VVT Export.

Claiming requirements describe the process of stating “This process

satisfies these requirements”. This is not a compliance statement, but

rather a compliance goal.

To model claimed requirements, PMT allows to use the two (equivalent)

model relations:

 In ProcessModules: Use the association

“ClaimedComplianceRequirements” (COMPLIANCE part), see Figure 66

 In Requirements: Use the association “ClaimingProcessModules”

(BASIC part), see Figure 67.

Note the PMT tree browser shows the compliance using “<->” after the

names of ProcessModules and requirements, see Figure 68.

User Manual of Process Modeling Tool Page 57
Version 1.2

Figure 66: Claimed Compliance Requirements in ProcessModule

Figure 67: Claiming Process Modules in Requirement

Figure 68: Compliance Claims in Tree-Browser

User Manual of Process Modeling Tool Page 58
Version 1.2

The compliance argumentation is done by adding Compliance elements.

The compliance element provide the linking to the process that are used

to satisfy the requirement and to the VerificationModules that are used to

verify the correct implementation of the requirements.

Figure 69: Compliance Elements

The Meta model for compliances shows that there are two containers that

can contain Compliance elements:

 Requirement: allows to store the compliance elements directly within

the requirements

 ProcessModule: allows to store the compliance argumentation within

the ProcessModule

While the first seams to be more natural from the standard point (it’s

easier to manually check for completeness), the second is more modular,

especially if ProcessModules are re-used and refined.

If a Compliance element is stored within a Requirement element it

demonstrates the compliance to it’s containing element. If a requirement

is contained within a ProcessModule the Requirement has to be explicitly

set (using the “Requirement” association).

If a ComplianceElement is stored within a ProcessModule (or

VerificationModule) the satisfying Process is the container. If it is stored

within a Requirement, the ProcessModule and VerificationModule elements

have to be linked explicitly.

For hierarchic requirements the compliance argumentation is usually also

hierarchic. If stored within the requirements (or ProcessModules), the

“SubCompliances” have to be linked in order to close the argumentation.

If Compliance elements are stored within other compliance elements as

“ContainedCompliances”) there is no need to set the SubCompliance link.

User Manual of Process Modeling Tool Page 59
Version 1.2

The best way to create compliance argumentation is to

 Select a requirement (usually the main goal, i.e. a hierarchic

requirement)

 Generate a compliance structure with PMT (including the links to the

requirements)

 Move this compliance structure into the process that is compliant

 Fill the compliance argumentation with arguments, process links and

V&V activities.

The second step can be done using PMT action

, that is in the popup menu of the requirement

action. The action creates a compliance argumentation tree with

 The same hierarchy as the requirements

 Compliance argumentations for hierarchic requirements using a default

argumentation that the requirement is satisfied since all sub-

requirements are satisfied.

 Variant terms in the compliance argumentation, provided that the

requirements had variant terms

8.2.5 Reuse & Linking

Processes can be reused in several ways:

1) Just reuse them as they are.

2) Instantiate them several times, see Section 8.2.7 for instantiation of

processes.

3) Reused within modeling.

The last point is scope of this section.

In general the model is a tree, visualized in the tree-browser. However it

is also possible to reuse elements by adding references. The following

elements support re-use:

 ProcessModules: process modules can refer to other process-modules

using the relation “SubProcessModuleReferences”.

 ProcessModules: can also re-use Parameters using the relation

“ParameterReferences”.

 Artifacts: Artifacts can refer to other artifacts using the relation

“SubArtifactReferences”.

User Manual of Process Modeling Tool Page 60
Version 1.2

 Models: Models can refer to other models using the relation “Includes”.

 Requirements: Requirements can refer to other requirements using the

relation “RequiredRequirements”

 Terms: Terms can re-use enumerated constants using the modeling

element “EnumValueRef” and terms can refer to Parameter values

using the model element “ParamRef”.

References are not visible in the tree-browser, but in the generated

documents and the other views in PMT: Properties, ProcessView,

ComplianceView.

If process modules shall be re-used it is recommended to create a process

library and re-use processes from that in the modeled processes. See

Figure 70 for an example of reuse.

Figure 70 shows a Library with a Verification and Validation Process that is

included (using “SubProcessModuleReferences”) in all three qualification

kit processes of Validas. The model also contains a switch

“Project:ProjectKind” i.e. a ProcessVariable with an enumerated type that

allows to select a current project kind by binding the value. In the

example the switch is bound to the enumerated value “LibraryQKit”, which

enables the library process and disables all other projects by tailoring. The

process view of the process “Library QKit” shows the included/referred

sub-process “V&V” which is not visible in the tree-browser, since it is

included as a reference into the process.

User Manual of Process Modeling Tool Page 61
Version 1.2

Figure 70: Reuse Example

8.2.6 Tailoring

Tailoring describes the adaptation of a generic process to a specific

project.

In PMT this is done automatically by using so called “Variant Terms”, i.e.

terms over ProcessVariables that describe the condition under which the

process is present. If the term evaluates to false the corresponding

modeling elements are “tailored away”. If the condition evaluates to true

the corresponding element will be considered. Note: If the term cannot be

evaluated then the element is also present. This is true in Generic

processes that can be tailored.

The description of the evaluation is contained at the end of Section 8.1

(Term Evaluation). The parameters are described in Section 8.2.8. All

used modeling elements (Terms, Parameters) are described in the meta-

model Section 9.

User Manual of Process Modeling Tool Page 62
Version 1.2

The re-use example of the previous section (Figure 70) can be used to

illustrate the tailoring. The tailoring can be analyzed by selecting the

project and starting the action “Evaluate Variants“ which results into the

following information, see Figure 71.

Figure 71: Evaluate Variants Result

8.2.7 Instantiation

Typically processes need to be instantiated several times (unless this is

not only done during V&V in VVT), this can also be done within PMT. There

are several modeling steps and properties that can be used to create new

process modules and to mark them as “Instances” of the generic process

(see Section 9.10.1).

Of course Instantiation of processes makes only sense for parameterized

processes. Typically the parameters are fixed within the project.

However there is a simplified way to create Instances of processes. This

can be done by the following steps:

 Creation of an additional ProjectParameter “LIST_OF_<Parameter>”

that contains all values that shall be instantiated to the parameter.

 Link the LIST_OF-Parameter to the process parameter as “Values from”

or “Iterator” parameter, such that the process parameter iterates over

the list parameter, i.e. received the values from it, see Figure 72. Note

that the list parameter has to have a List-Type, usually list of String.

 Create a Binding with all values of the list parameter (as a list term)

referring to the list variable and having the list-term contained.

User Manual of Process Modeling Tool Page 63
Version 1.2

Figure 72: Assignment of Iterator Parameters

An example for a generic process, ready for instantiation as described

above is depicted in Figure 73. It shows the list parameter, as well as the

parameter definition in ProcessModule Specify Test Cases. Other module

(Implement Test Cases and Verify Tests) refer to the parameter.

Figure 73: Example for Automatic Instantiation

On a well-defined project the instantiation can be started by selecting the

process to be instantiated and by selecting the popup action “Instantiate

Process Module”, see Figure 74.

User Manual of Process Modeling Tool Page 64
Version 1.2

Figure 74: Starting Automatic Instantiation on Process Module

After starting the action, the user is asked to conform the instantiation as

shown in Figure 75.

Figure 75: Confirmation of Automatic Instantiation

Finally PMT will display an information about the instantiated process

modules as shown in Figure 76. Note that only processes which have

User Manual of Process Modeling Tool Page 65
Version 1.2

parameters or references to them) will be instantiated, others not (Create

Test Framework in the example).

Figure 76: Result Information of Automatic Instantiation

The result of the instantiation is that the parameterized processes have

their instances as sub-processes, see Figure 77 and Figure 78. Note that

not only the processes have been instantiated, but also the artifacts have

“Sub-Artifacts” for each instance: The artifact “Test Specification” has now

three sub-artifacts:

 Test Specification for FEATURE->f1

 Test Specification for FEATURE->f2

 Test Specification for FEATURE->f3

User Manual of Process Modeling Tool Page 66
Version 1.2

Figure 77: ProcessModule Instantiation

Figure 78: ProcessModule Created Instances

8.2.8 Variables & Variants

Variables and Variants are used for tailoring, see Section 8.2.6.

8.2.9 Layouting

The graphical notation of the processes is done automatically by

converting the model into the dot format of graphviz, see

http://www.graphviz.org for more details.

The representation can also be seen (for debugging) by exporting it into

textual format and piping it into an online tool as graphviz for example.

http://www.graphviz.org/

User Manual of Process Modeling Tool Page 67
Version 1.2

The user can impact the layout in two ways:

1) By specifying layout priorities in the elements.

2) By specifying “invisible” between elements using “layout

before/after” properties

Consider the example in Figure 79. It contains a process module “PM” with

three sub-processes: “A”,”B” and “C”. The order of them is not

determined, since they are independent, so the left from right order is

undetermined by the model. In the example in Figure 79 the order is “B”

before “C” before “A”.

Figure 79: Layout Example: Unlayouted (random)

If the user wants to change the order to “A” before “B” before “C” it can

be done using the Layout priority. Setting the LayoutPriority attribute to

- A=30

- B=20

- C=10

This generates the desired layout as shown in Figure 80:

User Manual of Process Modeling Tool Page 68
Version 1.2

Figure 80: Layout Example: Layouted using Priorities

If the elements shall be ordered then the layout will be done by adding

(“invisible”) lines as specified. Figure 82 shows the result by specifying the

ordering using “LayoutBefore” and “LayoutAfter”. Please note that from

the view-point of “B” (middle), B is layouted after A and before C. So

hence the attributes in B are specified as shown in Figure 81.

Figure 81: Layout Example: Specification of Layout Order

User Manual of Process Modeling Tool Page 69
Version 1.2

Figure 82: Layout Example: Layouted by Ordering

8.2.10 Tools

Tools can be used to support the application of methods in processes. In

safety relevant processes it is important to use the tools safely. Therefore

they have to be classified and eventually qualified. The TCA tool, see

http://www.validas.de/en/services/tca/ is a special purpose tool for all

aspects of tool qualification. Therefore we focus in PMT only of the safety

process relevant aspects. These are

 The use cases of the tool (within the process)

 The supported methods required from safety standards

 A preliminary classification with an explaining argument.

Note that the preliminary classification is not standard compliant but

might be an indicator for the selection of tool candidates that can be

qualified, or do not need to be qualified.

Tools are modeled globally in the Process container as shown in the

example in Figure 83.

http://www.validas.de/en/services/tca/

User Manual of Process Modeling Tool Page 70
Version 1.2

Figure 83: Tool Modeling

8.2.11 Project Management

It is not the goal of PMT to replace professional project management tools.

PMT can provide input to them and can be used to demonstrate some

requirements on project management tools by some simple features, like

management of instances or requirements coverage.

PMT supports project management by some basic features

 Checking requirements coverage (useful during process development)

 Determining efforts

 Managing instances of processes

The Project Management Informations are grouped within the collapsible

group “Management” in the property view.

The PMT manages the status of the projects by

 A status of the artifacts with the following values (see Section 9.2.1):

o DEFINED

o PLANNED

o READY

o IN_PROGRESS

o DONE

 The same status can be specified for the ProcessModules

User Manual of Process Modeling Tool Page 71
Version 1.2

Note that PMT can determine the status semi-automatically, i.e. if all

inputs of a task (=ProcessModule) have the status DONE, then PMT can

infer the status of the task to “READY”. If user manually sets the status of

the tasks to DONE (or IN_PROGRESS), PMT can update the status of the

tasks outputs accordingly. The PMT status updates can be triggered using

the action “Update Project Status” on Process and ProcessModule

elements.

8.2.11.1 Project Overview

PMT can compute the project overview by starting the Action “Project

Overview” on Processes (see 7.2.2).

This results into a textual description of the project status including the

following information (see Figure 84):

 Effort Computation (and completeness): In case there are no efforts

specified (value=0) status will contain warnings: “Could not compute

effort for”, see Figure 84.

 Number of Requirements to satisfy

 Number of Compliances to contribute, including percentage of

compliance

 Numbers of Required Process Modules (to achieve compliance) and

Verification Modules

 Status of Tasks (ProcessModules) and Artifacts

Figure 84: Initial Project Status (Overview)

User Manual of Process Modeling Tool Page 72
Version 1.2

8.2.11.2 Project Status Details

PMT can compute the status details on projects. This is based on the

status of the artifacts and on the status of available inputs.

This results into a textual description of the project status including the

following information (see Figure 84):

 Effort Computation (and completeness): In case there are no efforts

specified (value=0) status will contain warnings: “Could not compute

effort for”, see Figure 84.

 Number of Requirements to satisfy

 Number of Compliances to contribute, including percentage of

compliance

 Numbers of Required Process Modules (to achieve compliance) and

Verification Modules

 Status of Tasks (ProcessModules) and Artifacts

Figure 85: Initial Project Status (Details)

User Manual of Process Modeling Tool Page 73
Version 1.2

8.2.11.3 Excel-Interface for Project Management

To interface with other project management tools, PMT uses an Excel-

interface to export & import the project status. Export & import can be

started from ProcessModules using the right mouse button (popup-action)

as shown in Figure 86.

Figure 86: Excel-Interface for Project Status

The Excel Interface consists of the following Information (see Figure 87)

for all manageable events:

 The type: Artifact/ProcessModule/VerificationModule

 The name

 The state

 The ID (if specified)

 The qualified name (separated using “.”, which should not occur in

names)

 Description

 Effort (only for ProcessModules & VerificationModules)

 Progress (only for ProcessModules & VerificationModules)

 Planned Start Date (only for ProcessModules & VerificationModules)

 Planned End Date (only for ProcessModules & VerificationModules)

Figure 87: Project Status in Excel

The status can be changed within Excel and will be-reimported into PMT.

All changes will be listed in an import log message, see Figure 88 for an

example. Please check this log carefully for errors and warnings. Note that

the updated model will not be marked as changed in PMT (due to a

current known issue) and safe it manually to a file.

Note that the “qualified name” is used to find & identify the elements in

the model. All other elements can be changed, for example also the name

or the ID.

User Manual of Process Modeling Tool Page 74
Version 1.2

Figure 88: Project Status Import Log

8.2.11.4 Project Status Update

Based on a current project status PMT can compute the next tasks. For

Example if all inputs and preceding tasks are in status DONE, than the

task can be set to status READY. This status update can be triggered

using the following action “Update Project Status” (on Process- and

ProcessModule elements), see Figure 89.

User Manual of Process Modeling Tool Page 75
Version 1.2

Figure 89: Start of Status Update

The result (changes states) is show in a text dialog, see Figure 90.

Figure 90: Result of Status Update

8.3 Consistency & Process Interfaces

A process is considered to be consistent if the inputs and outputs of it are

consistent with the sub-processes (if available). For example if a process P

with only one sub-process S has an input the input must also be an input

User Manual of Process Modeling Tool Page 76
Version 1.2

of the sub-process. Otherwise there would be “unused” inputs in the

process. If many sub-processes are contained, than at least on process

should need the input and should process it.

While this is an obvious consistency condition it is hard to enforce due to

two reasons

1. It has to be (automatically) checkable

2. It might lead to huge number of input outputs on the top-level and

contradict the desired level of abstraction.

The first item is solved by adding a validation rule to PMT: “Process

modules have compatible interfaces”. The second is achieved by using the

recursive structure of artifacts. On the containing process it is allowed to

have composed artifacts (hierarchic) as inputs and outputs. The sub-

processes can then access the sub-elements of the artifacts.

Figure 92 and Figure 93 show an example of a main process “Main” with

two Sub-Processes “Sub1” and “Sub2” that process hierarchic artifacts “A”

and “B” as described in the tree browser depicted in Figure 91. The

abstract view (Figure 92) of the process module “Main” shows the input

and output using the composed artifacts A and B. The detailed, inner view

of “Main”, see Figure 93 shows how the sub-components work on the sub-

artifacts.

Figure 91: Hierarchic Artifacts for Interface Example

Figure 92: Abstract Interface (Upper-Level)

User Manual of Process Modeling Tool Page 77
Version 1.2

Figure 93: Specific Interface (Lower-Level)

8.4 Refinement

Refinement is a frequently used concept for handling similar but different
things, for example in Object oriented programming languages, where

“inheritance” is useful.
PMT supports also refinement of processes. A general process can be

refined by more specific processes, for example a compiler qualification

project might specialize a general qualification project by adding additional

inputs (Language compliance suite) or additional outputs (coverage report

of the compiler). Also it is possible to define a more specific artifact, e.g. a

compiler qualification report that refines the tool qualification report.

If a process refines another process the input output artifacts of the

refining process are the addition of general artifacts and the specific

artifacts, except if the specific artifacts refine the more general ones.

The refinements can be specified within the Extended property tab of

ProcessModules/VerificationModules and Artifacts/Models. Refinements are

visualized as displayed using “:” in the tree browser, see Figure 94.

Figure 94: Structure with Refinements: Compiler Qualification refined Tool Qualification

User Manual of Process Modeling Tool Page 78
Version 1.2

The graphic representation of the refinements is done using “(refines

<name>)” annotations, see Figure 95.

Figure 95: Graphical Notation of Refinements

The “inherited” artifacts can be seen in the process report (and

compliance report) that lists all artifacts (alphabetically) including
annotations for inherited artifacts in the lists of Inputs and outputs, see

Figure 96. Note that the diagrams show the inner view representing the
contained sub-processes and their input outputs, hence the Input

“Language Test Suite” is only visible in the outer view of the containing
processes.

User Manual of Process Modeling Tool Page 79
Version 1.2

Figure 96: Generated Table for Compiler Qualification

For the sub-processes of refining elements the same principle applies as

for the interfaces: if a process module refines another process module it
automatically inherits all sub-elements from the refined elements. If a

User Manual of Process Modeling Tool Page 80
Version 1.2

Sub-ProcessModule refines an inherited sub-ProcessModule it “overwrites”

/ replaces it, i.e. the refined element is not inherited.

This is illustrated using the example refinements that shows different

qualification processes. Figure 97 shows an example (simplified)
qualification process with two sub-processes: “Execute Tests” and

“Document Qualification”.

Figure 97: Simplified Qualification Process

The Process Module “Apply QST with TAU” refines this module and
“replaces the “Execute Tests” with the automated “Run TAU” and replaces

the “Document Qualification” by “Generate Documentation”, see Figure
98.

User Manual of Process Modeling Tool Page 81
Version 1.2

Figure 98: Refined Process Module Example

Since both sub-modules are replaced there is no difference (except with
the interfaces) in this example. More interesting is the example Process

Module “TCA Qualification”, which refines the “Apply QST with TAU” and is
re-using (using “SubProcessModuleReferences”) a manual test execution

module “Run Tests Manually” instead of the inherited process module
“Run TAU”, see Figure 99.

User Manual of Process Modeling Tool Page 82
Version 1.2

Figure 99: Complex Refined Process Module Example

The generated process report shows all sub-processes correctly, see

Figure 100.

8.5 Validation

PMT supports three forms of validations that are described here:

 Syntactic / Automated Validation: Validates the model for selected

consistency checks

 Graphical Validation: Shows the process graphically and allows the

user to detect anomalies immediately

User Manual of Process Modeling Tool Page 83
Version 1.2

 Semantic Validation: This is a detailed review according to the so called

meta-process of PMT that can be performed using Excel and VVT (as

any other verification and validation planned using PMT)

8.5.1 Syntactic Validation

Syntactic validation applies automated consistency rules to the selected

model element and their children in the tree (it does not consider

references). It can be started using the Validate action on any element in

the tree browser, see Figure 100.

Figure 100: Starting the Validation

The results of the validation are shown in a dialog (see Figure 101) and in

the Diagnostic View as described in Section 7.6.

Figure 101: Validation Result Dialog

The following validation rules can be configured using the preferences

mechanism from Section 8.8, as shown in Figure 102. Note that Validation

configurations can be exported into preference files and reloaded such

that the preferences can be harmonized within a given project where

several users are working together.

User Manual of Process Modeling Tool Page 84
Version 1.2

Figure 102: Configuration of Syntactic Validation Rules

User Manual of Process Modeling Tool Page 85
Version 1.2

8.5.2 Graphical Validation

„Only Nice Processes are good processes”, at least in the sense of clarity

and understandability this is definitely true. This is the principle of the

graphical validation. Graphical validation is done using the graphical

Process View that shows the process graphically. Typical defects, like

wrong sequencing or missing inputs/outputs can be seen immediately.

Note that for graphical validation graphviz is required (see Section 6) and

the process modules have to have owners.

A graphically validated process is on the title page of this document.

8.5.3 Semantic Validation

The semantic validation is an intensive manual review of the process,

guided by the meta-process and supported from PMT, Excel and VVT. Most

details can be found in the MetaProcess.pmt description, which is included

in the example folder of the PMT.

The core idea is that the meta-process is parameterized by the process

modeling elements of PMT, i.e. it has a Parameter “VerificationModule”

and a corresponding parameterized VerificationModule that iterates over

all Verification modules that the user has modeled. The list of these

parameter instances is exported from PMT. It is the first (and only) step of

the semantic validation done in PMT, see Section 8.6.3.3.

8.6 Interfaces

PMT tool has several interfaces that are described in this section.

8.6.1 ProcessModule Ex- and Import

PMT allows to export ProcessModule elements into PMT files. By doing this

PMT models can be copied, moved, merged etc. in a modular way. The

export can be started using the popup-action on ProcessModule elements:

“Export ProcessModule (.pmt)”, see Figure 103.

Figure 103: Starting PMT Export to File

User Manual of Process Modeling Tool Page 86
Version 1.2

The stored PMT file contains only the selected ProcessModule element(s)

including all references and containers. It can be imported into any other

PMF model (on the Process level) by starting the corresponding “Import

ProcessModule (.pmt)” popup action on Process elements, see Figure 104.

Figure 104: Starting PMT Import from File

After importing the model a result dialog shows the imported elements,

see Figure 105.

Figure 105: Import Log Messages

8.6.2 VVT

The Verification and Validation Tool (VVT) works on models with the

extension .vvt. PMT can create an initial model, called “Schema”

containing all selected verification modules with corresponding criteria.

This schema then needs to be instantiated for every element in the

current project. For example if you plan to test modules based on a

verification process modeled using PMT, then the corresponding V&V

Schema can be exported using the VVT interface. VVT can handle

instantiation of the schema (to all test modules in the example) in a

User Manual of Process Modeling Tool Page 87
Version 1.2

similar way as PMT can instantiate processes to manage them in Section

8.2.7.

VVT Export can be triggered on Process and ProcessModules as shown in

Figure 106

Figure 106: Start VVT Export

After selecting a destination (file) for the VVT model, the model is

converted. After the export is finished, PMT shows a log file with the

created checks, as shown in Figure 107.

User Manual of Process Modeling Tool Page 88
Version 1.2

Figure 107: Log of VVT Export

8.6.3 Excel

PMT uses Excel for interfaces for the following purposes:

 Parameters for Instantiations

 Process Status

 Process Description (Export Only)

8.6.3.1 Parameters Interface

Parameters can be exported using the popup action on Process and

ProcessModule elements (see Figure 108).

User Manual of Process Modeling Tool Page 89
Version 1.2

Figure 108: Start Parameter Export

The exported parameter table in Excel contains for each exported

parameter a tab into which the values can be entered as shown in Figure

109.

Figure 109: Parameter Values in Excel

After filling in some data (as shown in

User Manual of Process Modeling Tool Page 90
Version 1.2

Figure 109), the parameter values can be imported into PMT using the

corresponding import actions, see Figure 110. Figure 111 shows a log

from importing describing the performed changes. Note that the import

also check the types of the values match with the exported types from the

parameters.

The results of the import are new / updated Parameter Bindings (see

Figure 112) that can be used to instantiate the process as described in

Section 8.2.7.

Figure 110: Starting Parameter Value Import From Excel

Figure 111: Log from Parameter Value Import

Figure 112: Resulting Parameter Binding from Parameter Value Import

User Manual of Process Modeling Tool Page 91
Version 1.2

8.6.3.2 Process Status

The process status can be used to trac/manage the project status, see

Section 8.2.11. PMT support this by providing an Excel format Export /

Import of the status of the artifacts and ProcessModules/Verification

Modules.

The ex- and import can be started from ProcessModule (and

VerificationModule) elements as shown in Figure 113.

Figure 113: Project Status Excel Interface Actions

The resulting Excel table (that can be updated and re-imported) is shown

in Figure 114. It has rows for all artifacts and ProcessModuels with the

following information:

 Type: The type of the element (Artifact or ProcessModule /

VerificationModule).

 Name: The name of the element.

 State: The status of the elements, see Section 9.2.1 for all available

states.

 The ID of the element.

 The qualified name of the element (do not change this, since this is

used to locate the elements in the model).

 Description: A description of the element.

 Effort: a number for the estimated effort (can be hours, days or $).

 Progress: a number normal less or equal the estimated effort.

 Planned Start: A date when the work should start.

 Planned End: A date when the work should end.

Please note that PMT will not remove elements if you delete rows in your

excel sheet. This has to be done automatically.

User Manual of Process Modeling Tool Page 92
Version 1.2

Figure 114: Project Status Format in Excel

The import shows a log file including the detected changes and warnings

as depicted in Figure 115.

Figure 115: Log from Importing Project Status from Excel

8.6.3.3 Process Description Export

In order to semantically validate a process the so called MetaProcess has
to be applied, see Section 8.5.3.

The export of the process description is started on ProcessModule

elements as shown in Figure 116.

Figure 116: Starting Export Process Parameter into Excel (ProcessModule)

The result is in the same format as the parameter export described in

Section 8.6.3.1, see Figure 117 for an example.

User Manual of Process Modeling Tool Page 93
Version 1.2

Note that not only the selected Process will be exported, but also the

linked elements like requirements, compliance argumentation,.. .

Figure 117: Process Description in Parameter Value Format

The exported excel table contains the following tabs, each filled (or

empty) with the used modeling elements:

 COMPLIANCE: the compliance elements relevant for the selected

process

 PARAMETER: the used parameters in the model (including referenced

ones)

 PROCESS: The selected process modules (and the referenced children),

but no VerificationModules

 PROCESS_ARTIFACT: The artifacts in the process

 REQUIREMENT: The requirements satisfied by the process

 ROLE: the used StakeHolders

 TOOL: the used tools

 VARIANT: the used variant terms

 VERIFICATION: the included verification modules

More detailed description of the parameters can be found in the

MetaProcess.pmt in the examples folder of PMT.

8.6.3.4 Development Interface Agreement

In order to cooperate in safety related process it is important to agree on

a work split. This can be done using excel tables which contain all artifacts

of the process. This table can be generated using the excel export on

Project Modules using the

User Manual of Process Modeling Tool Page 94
Version 1.2

Figure 118: Starting Export Development Interface Agreement (ProcessModule)

The result is an excel table with the following tables:

- Overview: describes the document status, version, author and

history

- Artifacts: The list of all artifacts with the informations from the

model

- Roles: the roles in the process

- Parameters: the used parameters

- Steps: the used process & verification modules

The table cannot be imported again into the model.

8.6.3.5 Offer

This action (see Figure 119) exports a calculation for all artifacts that have

to be delivered from the selected roles (first dialog, see Figure 120)

Figure 119: Starting Export of Offer (ProcessModule)

The offer selection dialog shows all roles which are responsible for

artifacts in the selected process and allows to select several roles.

Figure 120: Offer Selection Dialog

The result is an excel table with a calculation for prices of all artifacts (that

have ProjectRelevant set to true and that are in the responsibility of the

selected roles.). The prices are computed based on the daily rate and the

effort (multiplied by “NumberOfInstance” in case the artifact is required

User Manual of Process Modeling Tool Page 95
Version 1.2

for several parameter values). If no efforts are specified, the default value

of 2 is used for all artifacts that have no relation to a compliance element

for a requirement and 5 if the document is required for compliance

argumentation.

Figure 121: Daily Rate Dialog

The daily rate has to be entered (as positive number) within the next

dialog, see Figure 121

The generated calculation table cannot be imported again into the model.

Figure 122: Calculation Table (partly)

User Manual of Process Modeling Tool Page 96
Version 1.2

8.6.4 Ecore Importer

PMT allows to create and use a meta model for the definition of model-

based processes, see Section 8.2.2 and 9.12.

To reduce the work for modeling tools based on Eclipse Modeling

Framework using an .ecore file, the meta model of a tool can be imported

automatically from that file into the model.

Figure 123: Starting Import Ecore Model

After selecting an .ecore file the meta model is imported and a log file is

displayed as shown in Figure 124.

User Manual of Process Modeling Tool Page 97
Version 1.2

Figure 124: Import Log from Ecore Importer

8.7 Report Generators

PMT supports the generation of the following reports:

 Process Report: contains a detailed description of the process.

 Compliance Report: contains the compliance argumentation.

Both report generators use templates that are included in the PM tool but

can be adapted if desired.

Note: both reports contain variables that need to be updated manually

within Word by selecting the whole document (STRG+A) and updating the

variables (F9).

8.7.1 Process Report

The process report can be generated from any ProcessModule and Process

by starting the action “Word Generators -> Process Report” as shown in

Figure 125.

Figure 125: Starting Process Report Generation

The generated report has the structure and title pages as shown in Figure

126.

User Manual of Process Modeling Tool Page 98
Version 1.2

Figure 126: Structure and Title of Process Report

8.7.2 Compliance Report

The compliance report can be generated from any ProcessModule and

Process by starting the action “Word Generators -> Compliance Report” as

shown in Figure 127.

Figure 127: Starting Compliance Report Generation

The generated report has the structure and title pages as shown in Figure

128.

User Manual of Process Modeling Tool Page 99
Version 1.2

Figure 128: Structure and Title of Compliance Report

8.8 Preferences

PMT has the following preferences that can be adjusted (see Figure 129):

 General Preferences: Define the appearance of PMT property editors:
Filtering Preferences: Configure the filtering mechanism, see Section

8.9.
 Validation Preferences: Select the syntactic validation rules see Section

8.5.1.
 Projection Preferences: Configure the model projection, see Section

7.5.

Qualified names reflect the tree hierarchy by concatenating all name

segments using the configured separation character.

Qualified names can be very valuable in bigger models to find the right

element in long element lists of “selection dialogs”, where you want to

select an element, for example a process that creates an artifact.

Qualified names can also be used in the property dialogs, if configured.

User Manual of Process Modeling Tool Page 100
Version 1.2

Figure 129: PMT Preference Window

8.9 Filter Scoping

In order to reduce the number of displayed elements in the dialogs scopes

can be used and activated.

A scope is a process module and all contained elements. Scopes are

stored in the Process element (root container) in order to make them part

of the model.

The filter scopes have to be activated within the preference dialog by

selecting “Active Process Modules” in the “Active Scope” dialog as shown

in Figure 130

Figure 130: Activation of Filter Scoping

Once activated the Scopes can be selected as shown in Figure 131.

User Manual of Process Modeling Tool Page 101
Version 1.2

Figure 131: Definition of Filter Scopes

Figure 132 shows the result in the selection dialog. Only the filtered

elements are shown (and the top-level process modules).

Figure 132: Application of Filter Scopes

User Manual of Process Modeling Tool Page 102
Version 1.2

Figure 133: Application without Filter Scopes

User Manual of Process Modeling Tool Page 103
Version 1.2

9 Meta Model of PMT

This chapter describes the complete process model and the elements

together with modeling rules and the visualization in the browser.

A coarse overview of the model (“powerpoint level”) is depicted in Figure

134. It shows the main structures but omits the details that will be

described in the remainder of this section.

Figure 134: Metamodel - Powerpoint Level

The PMT is an Eclipse-based RCP application. The core of the application is

the meta-model. Section 9.1 describes the basic principles. The model has

common interface, see Section 9.3 and follows some scoping rules (see

Section 9.4).

The model is described in semantic groups (class diagrams) that focus on

semantic aspects, e.g. tailoring, tools,.. The class diagrams focus on those

aspects. However the descriptions of the classes contain all aspects such

that it can be used as reference.

User Manual of Process Modeling Tool Page 104
Version 1.2

9.1 Syntax of Meta Model

The meta model describes the structure of the model. It defines the

syntax, i.e. the form of the model. The following chapters describe the

interpretation and semantics of the model.

The meta model consists of the following elements:

 Classes with names

 Attributes (of classes) with names and types

 Associations to other classes with names and cardinalities

The meta model describes the possible models as follows:

 Every element of the model has to be of a given type which is

represented as class in the meta model

 Every element in the model has properties that can be changed by the

user. Properties are either attributes, e.g. a name or relations

(“associations”) or “compositions” to other elements in the model.

 Attributes have types, e.g. String, Integer, Boolean to constraint the

possible elements that can be modeled.

 Associations are links to other elements in the model of a given type.

Associations have cardinalities to specify the number of associated

elements. Used cardinalities are in PMT

o 0..1: zero or one occurrence

o 0..*: zero or arbitrary

 Compositions are like associations, except that the related elements

are “contained” in the element, i.e. are deleted when the element is

deleted.

 Containers: can contain the elements, i.e. if an element has to be

created this can only be done within an appropriate container.

The meta model is implemented within an ecore file in PMT and described

using class diagrams. Classes are depicted as boxes with their names on

top and the attributes and their types after a colon below the line.

Relations are depicted as arrows. Their names and cardinalities are

depicted at the end of the outgoing arrows. Some arrows are bi-directed,

denoting that the relation between the objects is “inverse”, i.e. every

object A has relation to B and B has inverse relation to A. The smart thing

is that it suffices to specify one of both associations and the opposite is

set automatically from the tool. Compositions are marked with black

diamonds on the container.

Figure 135 shows an example: It shows the classes “Process”, “Tool” and

“ProcessModule”, their attributes and relations. There is a composition

User Manual of Process Modeling Tool Page 105
Version 1.2

from Process to Tool called “tools”, denoting that the process contains

Tool elements and that they are called tools. The element “Tool” has two

attributes of type String: PreliminaryClassification and

ClassificationExplanation, those can be used to describe a preliminary

classification, e.g. “critical” or “uncritical” and a textual explanation.

Furthermore the example specifies a bi-directional association between

Tools and ProcessModules denoting that tools can be used in process

modules and process modules can be supported by tools. All cardinalities

are 0..*.

Figure 135: Meta Model: Class Diagram Example

The described meta model results into the following PMT models:

The compositions are structure in the tree browser. In Figure 136 it can be

seen that the selected element “Test Tool” is contained in the process

“Validas Module Test Process” (via the group Tools) and that it has

(despite the general properties like Name, Description,…) the two

specified attributes: “Preliminary Classification” and “Classification

Explanation”.

Furthermore the “Test Tool” element has an association to the Process

Module “Execute Test”.

Note that the class diagram might not show all properties to keep it

simple (however the specifications in this section are complete), therefore

there are also other properties of the tool that can be edited. For example

there is also a “Tool Owner” that can be set to at most one StakeHolder

(Cardinality is 0..1).

User Manual of Process Modeling Tool Page 106
Version 1.2

Figure 136: Model: PMT Structure Example

The meta model specifies the allowed models and their structures. Further

information about these concepts can be found in the documentation of

the used Eclipse Modeling Framework (EMF).

9.2 Enumerations

Some attributes have a finite set of values and are defined using

enumerations. Those are specified in this section.

9.2.1 ProcessStatus

The process status in PMT consists of the following values:

 DEFINED: the task/artifact is defined, but not ready to start working.

 PLANNED: The task/artifact is planned, i.e. has resources and dates

assigned.

 READY: the task/artifact is ready to start, i.e. its inputs are in the state

DONE (Theoretically it would also be possible to work on inputs of

status “IN_PROGRESS”, but this is not useful for a formal calculus).

 IN_PROGRESS: the task/artifact has started but not ended.

 DONE: the task/artifact is done.

Note that the project status is defined for ProcessModules and Artifacts.

User Manual of Process Modeling Tool Page 107
Version 1.2

9.2.2 SafetyLevel

The SafetyLevel specifies the maximal safety level of the process. It can

have the following values:

o ASIL_A

o ASIL_B

o ASIL_C

o ASIL_D

o SIL_1

o SIL_2

o SIL_3

o SIL_4

o TQL_5

o TQL_4

o TQL_3

o TQL_2

o TQL_1

9.2.3 Cardinality

The Cardinality is used to specify the number (“cardinality”) of the

elements that can be related to the element by these associations. Main

cases in EMF are “one” or “many” associations. Cardinality can have the

following values:

o CARDINALITY_0_to_1: Only one element can be present or

not.

o CARDINALITY_1: Exact one element has to be present. Many

tools do not enforce this condition, so it is rarely used.

o CARDINALITY_0_to_N: Many elements can be present or not.

o CARDINALITY_0_to_N: Many elements can be present but at

least one has to be present. Many tools do not enforce this

condition, so it is rarely used.

Also other cardinalities can be specified, e.g. “2” in UML, but for simplicity

we decided to use a (finite) enumeration for cardinalities.

9.3 General Interfaces

In PMT there are two main interfaces that harmonize modeling, Figure

137: “Named” for all elements with names and “Variantable” for all

User Manual of Process Modeling Tool Page 108
Version 1.2

elements that can have tailoring using variant terms and graphical

layouts6.

Figure 137 shows the interfaces, together with two example elements

(Process and ProcessModule) and their relations. Note that “Variantable” is

a specialization of “Named”, i.e. every element that can have

variants/layouts is always “Named” with Name, Description,..

The “Process” class implements the Interface “Named”, hence it inherits

all its attributes. The “ProcessModule” class implements “Variantable”,

hence it inherits all attributes from “Variantable” AND “Named”.

Figure 137: Interfaces in PMT (with examples)

9.3.1 Named

The interface “Named” is a superclass of all named elements (all PMT

elements except MetaModel, Binding and Term-Elements have names),

allowing them to have the following attributes:

 Attributes:

o Name: String: the name of the element

o Description: String: a short description of the element

o LongDescription: String: a multi-line description of the

element

o ID: String: a unique identified for the element

6 The interfaces IVerifies and IVerifier (in the implementation) are depreciated and might be
removed in future version of PMT. Therefore they are not described here further.

User Manual of Process Modeling Tool Page 109
Version 1.2

o Comment: String: a comment explain the element description

o Deactivated: Boolean: if specified this element will be ignored

o projectRelevant: Boolean (Default=true): can be used to

specify project relevance, e.g. for exporting project specific

documents like DIA or offers.

o projectComment: String: can be used to explain project

specific things, especially if things are not project relevant.

9.3.2 Variantable -> Named

The interface “Variantable” is a superclass of all elements that can have

variants (see Section 8.2.6) and graphical layout (see Section 8.2.9),

allowing them to have the following attributes (in addition to all properties

inherited from the superclass Named):

 Superclass: Named, see Section 9.3.1.

 Subclasses:-

 Instances: The following elements are “variantable”

o ProcessModule (and VerificationModule)

o Artifact (and Model)

o StakeHolder

o Criterion

o Tool

 Attribute:

o LayoutPriority: int: The priority of this element for layout

computation: The higher the priority value, the higher will be the

priority, i.e. the elements are sorted “descending”, see Section

8.2.9 for more details about layout.

 Composition:

o Variants: BoolTerm [0..*]: Terms under which the element is

activated. I.e. if one of the contained terms evaluates to true the

element is present (“OR-semantic”)

 Associations:

o LayoutBefore: Variantable [0..*]: The elements that shall be

layouted before this element (by drawing invisible lines from

them)

o LayoutAfter: Variantable [0..*]: The elements that shall be

layouted after this element (by drawing invisible lines to them)

User Manual of Process Modeling Tool Page 110
Version 1.2

9.3.3 Verification Interface

The verification interface has been introduced to implement verification

relations in a generic way and to make PMT easily extensible for future

verification constructs. Currently it is however only used with the

Verification Module and the artifacts that are verified. The verification

interface (see Figure 138) consists of two abstract classes:

 IVerifier: the verifier

 IVerifiedBy: the verified element

Figure 138: Verification Interface

The interface “IVerified” indicates that the implementing element is

verified. Usually artifacts are verified.

 Superclass: -

 Instances: The following elements are “IVerified”

o ProcessModule (and VerificationModule)

o Artifact (and Model)

o Requirement

 Attribute: -

 Composition:

 Associations:

o verifiedBy: IVerifier [0..*]: The verifier (typically verification

modules) that verify the element.

The interface “IVerifier” indicates that the implementing element verifies

something. Usually VerificationModules are verifiers.

 Superclass: -

 Instances: The following elements are “IVerifier”

o ProcessModule (and VerificationModule)

 Attribute: -

 Composition:

 Associations:

o verifies: IVerifiedBy [0..*]: The verifier (typically verification

modules) that verify the element.

User Manual of Process Modeling Tool Page 111
Version 1.2

9.4 Scoping, Hierarchy and Reuse

The PMT model is structured as a tree. Most properties are specified

“locally” in the elements that have them, for example the name of the

element or its description.

Some attributes however are “inherited” into the contained elements, for

example if an element is deactivated, it automatically deactivates all its

children, even those elements are not specified to be deactivated.

The same holds for the owner of a process module or artifact. If the

process module has no owner specified it is associated to the owner of the

containing process module. This greatly simplifies specification of

responsibilities.

The same holds for variables & parameters. If a variable/parameter shall

be evaluated (for example to determine if a variant is true/false), PMT

searches for its value first locally in the using element. If it is not found

(bound) there the value is searched in the containing element until the

value is found or the root element (Container) has been searched for it.

Note that only non-deactivated elements are considered (also in the

search for variables).

Most elements (Types, Stakeholder, Artifacts and ProcessModules) can be

contained in the global root container (“Process”) or in any other process.

For modularity it is better not to store them globally, but local in the

process where the elements belong to.

Since the model is a tree structure it is hard to re-use elements (without

copy & pasting them, which would make them hard to modify).Therefore

we have added so called References to the meta model that support the

reuse of hierarchic elements without copying it. Technically they are

implemented as associations, semantically they are treated like

compositions in the generated artifacts (but currently not within the tree

browser7).

For example there may be many documents, e.g. TQR and a TSM that

each has a table of contents consisting of references to sections. Instead

of modeling the table of contents twice, we can use references to it in the

modeled documents and for sake of reuse put the table of contents into

something that we model as template-library.

In the Artifact example the name of the reference is

“SubArtifactReferences”. It can be specified as shown in Figure 139 by

adding the “Table Of Contents” Artifact from the “Validas Library” Process

7 This might change in future, once the feature request #XX is implemented.

User Manual of Process Modeling Tool Page 112
Version 1.2

as “SubArtifactReference” to the artifact “TQR”, such that the TQR has

then not only three children (as shown in the tree browser) but four

(including the table of contents) as shown in the Process Module View.

Figure 139: References in Artifacts

The same concept of references can be used with process modules, see

Figure 140. Also parameters can be referenced from other modules.

In requirements there are also references, but this is called (due to the

nature of safety standards that frequently use these pointers)

“RequiredRequirements”.

Figure 140: References in Process Modules

9.5 Types

PMT has a static type system. Terms and types build the basis for PMT

models and their automated evaluation, see Section 8.1. In this section all

modeling elements are described that can be used to express Variants,

Conditions and values for Parameters:

 Types: Define the basis of the PMT terms.

 Terms: Define the allowed terms that can be used within PMT.

 Bindings: Bind Values to Parameters.

Parameters are defined in Section 9.8.

User Manual of Process Modeling Tool Page 113
Version 1.2

Figure 141: Meta-Model for all Types

Types can be defined in “Process” and “ProcessModule” elements, see

Section 8.1. Figure 141 gives an overview on the possible definitions of

types.

9.5.1 Type -> Named

The type describes the set of possible values that a Term with that type

can have, e.g. a Boolean variable can have the values of type Bool (True

and False).

Figure 142: Meta-Model of Type

Type implements Named and in addition it contains the following

properties (see Figure 142):

 Superclass: “Named”, see Section 9.3.1.

 SubClasses: EnumType and ListType

 Container: The following elements can contain Types

o Process

o ProcessModule (and VerificationModule)

 Attributes: No additional attributes for Types.

 Associations:

o Parameters: The parameters that have this type.

 Compositions: No compositions of Type.

User Manual of Process Modeling Tool Page 114
Version 1.2

9.5.2 EnumType -> Type

EnumType is the type of elements that can have only values from an

enumeration that defines the Enumerated Type. The enumerated values

(“EnumValue” are contained in the definition of the EnumType).

Figure 143: Meta-Model of EnumType with EnumValues

EnumType subclasses Type and in addition it contains the following

properties (see Figure 143):

 Superclass: “Type”, see Section 9.5.1.

 Container: The following elements can contain Types

o Process

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations: -

 Compositions:

o EnumValue: the enumerated values of the definition.

In contrast to classical programming languages there are no textual

definitions of enumerated types (as in Java) that can be used in PMT yet.

9.5.3 EnumValue -> Named

EnumValue represents a single enumerated value of an EnumType.

EnumValues are contained in the definition of their types (EnumType)

User Manual of Process Modeling Tool Page 115
Version 1.2

Figure 144: Meta-Model of EnumValue

EnumValue subclasses Named and in addition it contains the following

properties (see Figure 144):

 Superclass: “Named”, see Section 9.3.1.

 Container: The following element can contain EnumValues:

o EnumType

 Attributes: No additional attributes for EnumValues.

 Associations: No additional associations for EnumValues.

 Compositions: No additional compositions for EnumValues.

9.5.4 ListType -> Type

ListType is the type of lists over values. The contained values in the list

have all the same “base type”. List terms can be constructed using the

ListTerm constructor.

Figure 145: Meta-Model of ListType with Base Type

ListType subclasses Type and in addition it contains the following

properties (see Figure 145):

 Superclass: “Type”, see Section 9.5.1.

User Manual of Process Modeling Tool Page 116
Version 1.2

 Container: The following elements can contain ListTypes:

o Process

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations:

o BaseType: Type [0..1]: The base type of the list, e.g. String from

ListOfString.

 Compositions: -

In contrast to classical programming languages there are no textual

definitions of list types (as in Java) that can be used in PMT yet.

9.6 Terms

Terms describe conditions and values in the PMT model. Boolean terms

can be expressed for automated tailorings in the process model. Basically

Terms are built, as usual in lambda calculus over the following elements

that are described within this section:

 Constants (and enumerated values)

 Operators, e.g. &&,||,==

 Variables, modeled as Parameters described in Section 9.8.

In order to maintain the consistency of the model, we cannot add

constants and variables several times into terms. Otherwise we would

have duplicated constants denoting the same terms. Therefore we added

references to parameters and enumeration values to the term model.

Constants are always different, when evaluating them, see Section 8.1.

Currently we do not see the need for arithmetic operators within process

modeling, therefore we have concentrated mainly on the Boolean terms.

The model of terms is depicted in Figure 146.

User Manual of Process Modeling Tool Page 117
Version 1.2

Figure 146: Meta-Model of all Terms

9.6.1 Term

The class Term is an abstract class for all different terms. Every term can

have a Type describing its allowed values.

Figure 147: Meta-Model of Term

Term has no Superclass for efficiency reasons (to keep terms small) (see

Figure 147):

 Superclass: -

 SubClasses

o EnumValueRef: References to EnumValues.

o Constant: Constant value, e.g. 1 or True.

o ListTerm: a list term, with term arguments (of the same type).

o BoolTerm: Boolean terms with term arguments (of boolean

type).

o ParamRef: References to a Parameter.

 Container: The following elements can contain Terms

o Variantable elements:

 ProcessModule (and VerificationModule)

 Artifact (and Model)

 StakeHolder

 Criterion

 Tool

User Manual of Process Modeling Tool Page 118
Version 1.2

o Binding: contains the bound value (Term)

o ListTerm

o BoolTerms:

 ORTerm

 ANDTerm

 EQTerm

 NOTTerm

 InList

 Attributes: -

 Associations:

o Type: Type [0..1]: the type of a Term

 Compositions: -

9.6.2 EnumValueRef -> Term

An EnumValueRef element is a constant term referring to an

enumerated value (EnumValue, see Section 9.5.3).

Figure 148: Meta-Model of EnumValueRef

EnumValueRef is a Term allowing to use enumerated values within terms

(see Figure 148):

 Superclass: Term, see Section 9.6.1.

 SubClasses: -

 Attributes: -

 Associations:

o EnumValue: EnumValue [0..1]: the referred EnumValue.

 Compositions: -

Note for efficiency reasons the relation between EnumValueRef and

EnumValue is uni-directional, i.e. the EnumValue does not know which

references to it exists.

9.6.3 Constant -> Term

A Constant element is a constant term with a defined and unchangeable

value.

Figure 149: Meta-Model of Constant

User Manual of Process Modeling Tool Page 119
Version 1.2

Constant terms are used to evaluate terms, see Section 8.1.

 Superclass: Term, see Section 9.6.1.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes:

o Value: String: contains the value of the constant, e.g “1”, or

“FALSE”.

 Associations: -

 Compositions: -

Note that we do not distinguish between different types of constants, e.g.

Boolean Constants, Integer Constants,… This is expressed by the assigned

Type, which is inherited from the super-class Term.

9.6.4 ListTerm -> Term

A ListTerm element is a Term constructor for building lists (comparable to

“[.]”) that takes a list of term arguments and creates a list of it.

Figure 150: Meta-Model of ListTerm

ListTerm is a Term allowing to use enumerated values within terms (see

Figure 148):

 Superclass: Term, see Section 9.6.1.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions:

o Terms: Term [0..*]: List of arguments/elements in the list.

9.6.5 BoolTerm -> Term

A BoolTerm element is a Term constructor for building Boolean terms

(comparable to operators like &&, ||, ==,..) that takes a list of term

arguments and creates Boolean expressions of them, for examples “TRUE

&& X”.

User Manual of Process Modeling Tool Page 120
Version 1.2

Figure 151: Meta-Model of BoolTerm

BoolTerm is a Term with a boolean result that can be used in conditions

(see Figure 151):

 Superclass: Term, see Section 9.6.1.

 SubClasses:

o InList: checks if an element is in a list.

o ANDTerm: is true if both arguments are true.

o ORTerm: is true if one argument is true.

o NOTTerm: is true if the argument is false.

o EQTerm: is true if the terms are equal.

 Containers: see Term in Section 9.6.1

 Attributes: -

 Associations: -

 Compositions:

o Terms: Term [0..*]: List of arguments of the BoolTerm.

9.6.6 ParamRef -> Term

A ParamRef element is a constant term referring to a parameter

(Parameter, see Section 9.8).

Figure 152: Meta-Model of EnumValueRef

ParamRef is a Term allowing to use parameters values within terms (see

Figure 152):

 Superclass: Term, see Section 9.6.1.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations:

o Parameter: Parameter [0..1]: the referred Parameter.

 Compositions: -

User Manual of Process Modeling Tool Page 121
Version 1.2

9.6.7 InList -> BoolTerm

An InList element is a boolean term for checking if an element is in a list

of elements. Of course the types have to be compliant, i.e. a String can

only be in a list of Strings.

Figure 153: Meta-Model of InList

InList is a special boolean term (see Figure 153) with the following

properties:

 Superclass: BoolTerm, see Section 9.6.5.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions: -

9.6.8 ORTerm -> BoolTerm

An ORTerm element is a boolean term for expressing a logical “or”

operation, e.g. A || B.

Figure 154: Meta-Model of ORTerm

ORTerm is a special boolean term (see Figure 154) with the following

properties:

 Superclass: BoolTerm, see Section 9.6.5.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions: -

User Manual of Process Modeling Tool Page 122
Version 1.2

9.6.9 ANDTerm -> BoolTerm

An ANDTerm element is a boolean term for expressing a logical “and”

operation, e.g. A && B.

Figure 155: Meta-Model of ANDTerm

ANDTerm is a special boolean term (see Figure 155) with the following

properties:

 Superclass: BoolTerm, see Section 9.6.5.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions: -

9.6.10 NOTTerm -> BoolTerm

An NOTTerm element is a boolean term for expressing a logical negation,

for example !A.

Figure 156: Meta-Model of NOTTerm

NOTTerm is a special boolean term (see Figure 155) with the following

properties:

 Superclass: BoolTerm, see Section 9.6.5.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions: -

User Manual of Process Modeling Tool Page 123
Version 1.2

9.6.11 EQTerm -> BoolTerm

An EQTerm element is a boolean term for expressing equality, for example

A==B.

Figure 157: Meta-Model of EQTerm

EQTerm is a special boolean term (see Figure 155) with the following

properties:

 Superclass: BoolTerm, see Section 9.6.5.

 SubClasses: -

 Containers: see Term in Section 9.6.1.

 Attributes: -

 Associations: -

 Compositions: -

9.7 Bindings

Bindings allow to bind variables in terms to values. Variables in terms are

parameters of the process. Bindings contain a Term that is used for the

bound variables. Bindings can be declared locally (within ProcessModules),

or globally with Process elements.

Figure 158: Meta-Model of Bindings

Binding is a modeling (see Figure 158) with the following properties:

 Superclass:

User Manual of Process Modeling Tool Page 124
Version 1.2

 SubClasses: -

 Container: The following elements can contain Bindings:

o Process

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations: -

o Parameter: Parameter [0..1]: The parameter to which the value

is bound.

 Compositions:

o Value: Term [0..1]: the term to which the Parameter is bound

(after evaluating it), see Section 8.1.

Note that the search for parameter bindings is not done using the

association in the model, but according to the scope in which the term is

evaluated. So if the parameter X is evaluated in a process P, than the

Bindings of the process P are checked if they bind the parameter X. If not

the parents of P,.. until the global bindings in Process are considered.

9.8 Parameters

Parameters can be used to tailor and instantiate processes, see Sections

8.2.6 and 8.2.7. A parameter of a process is something that can change

its value and have impact of the process, for example the selected safety

standard or the name of a tool.

There are different kinds of parameters, that can be used to express

different intentions of the parameter:

 Process Parameter: A parameter that impacts the process (before

staring the process), e.g. the relevant safety standard, or the type of

the qualified object (Tool / Library / Software).

 Planning Parameter: A parameter used for planning the projects &

efforts, e.g. the number of tools or lines of code.

 Project Parameter: A parameter that is determined during the project,

e.g. the name of the modeled feature or tool.

 Process Variable: a parameter that impacts the process that is

determined within the project, e.g. the criticality of a tool. This is

somehow a combination of ProcessParameter and a project parameter.

ProcessVariables can be used to model process decisions, see Section

8.2.8.

The Process, Planning and Project parameters have currently no semantic

differences in PMT, so they can be chosen based on the intuition.

Parameters are always parameters of ProcessModules, so a ProcessModule

is like a function that has parameters and can be reused for different

values of the parameters, including a parameter dependent behavior.

User Manual of Process Modeling Tool Page 125
Version 1.2

Since parameters shall be re-usable by many process modules they can

also be referred from ProcessModules using the association

“ParameterReferences”. This reference mechanism allows also to declare

parameters globally (in Process) and reuse them in all ProcessModules

that shall have them.

Note: if a ProcessModule has a parameter, this implies that automatically

all contained process modules “inherit” the same parameter.

Parameters are modeled as described in Figure 159.

Figure 159: Meta Model of Parameters

9.8.1 Parameter -> Named

Parameter is an abstract class for all PMT parameters.

Parameter has the following properties:

 Superclass: Named, see Section 9.3.1.

 SubClasses:

o ProcessParameter

o PlanningParameter

o ProjectParameter

o ProcessVariable

 Container: The following elements can contain Parameters

o Process

 Attributes: -

 Associations:

o Type: Type [0..1]: The type of the parameter.

o ReusingProcessModules: ProcessModules [0..*]:

ProcessModules that reuse the parameter.

User Manual of Process Modeling Tool Page 126
Version 1.2

o IteratorParameters:Parameter [0..*]: The parameters that

iterate over this parameter (only meaningful if this parameter is

a list parameter), see Section 8.2.8 for the concept of iterators.

o ValueFromListParameter: Parameter [0..1]: The parameter

(list), where this parameter receives its values from, see Section

8.2.8 for the concept of iterators.

 Compositions: -

9.8.2 ProcessParameter -> Parameter

A Process Parameter is a specific Parameter. Its values are determined

during process compliance phase before planning the project.

ProcessParameter has the following properties:

 Superclass: Parameter, see Section 9.8.1.

 SubClasses: -

 Container: The following elements can contain all kinds of Parameters

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations: -

 Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.3 PlanningParameter -> Parameter

A Planning Parameter is a specific Parameter. Its values are determined

when planning the project, e.g. during offer creation phase.

PlanningParameter has the following properties:

 Superclass: Parameter, see Section 9.8.1.

 SubClasses: -

 Container: The following elements can contain all kinds of Parameters

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations: -

 Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.4 ProjectParameter -> Parameter

A Project Parameter is a specific Parameter. Its values are determined

within the project. ProjectParameter has the following properties:

 Superclass: Parameter, see Section 9.8.1.

 SubClasses: -

 Container: The following elements can contain all kinds of Parameters

o ProcessModule (and VerificationModule)

User Manual of Process Modeling Tool Page 127
Version 1.2

 Attributes: -

 Associations: -

 Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal.

9.8.5 ProcessVariable -> Parameter

A Process Variable is a specific Parameter. Its values are determined

within the project but also impact the process. For example a TestResult

could have the values true/false and trigger different sub-processes.

ProcessVariable has the following properties:

 Superclass: Parameter, see Section 9.8.1.

 SubClasses: -

 Container: The following elements can contain all kinds of Parameters

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations:

o DeterminedByProcessModules: ProcessModule [0..*]: the process

modules that determine the value of the variable, e.g. the

ProcessModule “Run Test” determines the variables of the

ProcessVariable TestResult, see Section 8.2.8.

 Compositions: -

Note: semantically Project-, Planning- and Process-Parameters are equal

but ProcessVariables have a different behaviour when drawing processes

graphically.

9.9 Process Frame

Main element of the process model are processes and process modules,

see Figure 160.

User Manual of Process Modeling Tool Page 128
Version 1.2

Figure 160: Processes

9.9.1 Process -> Named

The element Process is the root element for all process models in PMT.

See Section 6 for the creation of new models using Process elements.

Figure 161: Meta-Model of Process with all Attributes and References

Process implements Named and in addition it contains the following

properties (see Figure 161):

 Superclass: “Named”, see Section 9.3.1.

User Manual of Process Modeling Tool Page 129
Version 1.2

 Attributes:

o MaximalSafetyLevel: SafetyLevel: Specifies the maximal

safety level of the process. ASIL_D is the default value:

 Associations:

o FilterScope: ProcessModule: [0..*]: the ProcessModules that

shall be used in selection dialogs (to filter not relevant elements).

 Containments:

o Tools: Tool [0..*]: The tools used globally within this process.

o Requirements: Requirement[0..*]: The available

requirements within this process.

o Artifacts: Artifact [0..*]: The (global) artifacts available in the

process.

o Methods: Method [0..*]: the available methods in the process.

o ProcessModules: ProcessModule [0.*]: The available

processModules in the process.

o StakeHolders: StakeHolder [0..*]: The available stake

holders / roles in the process.

o Depreciated8: ProcessConditions: ProcessCondition [0..*]:

The available conditions in the process.

o Bindings: Binding [0..*]: The bindings of variables and

parameters in the process.

o Parameters: Parameter [0..*]: The (global) parameters in the

process.

o Types: Type [0..*]: The (global) type definitions in the process.

o ToBeImplemented9: Preferences:Preference [0..*]:

Preferences would allow to store the model relevant preferences,

e.g. validation rule settings in the mode, such that models would

validate identical in all environments, independent from the local

PMT preferences. Also the filter-scopes could be stored as

preferences.

o FilterScope: ProcessModule: [0..*]: the ProcessModules that

shall be used in selection dialogs (to filter not relevant elements).

This is just a useful simplification of editing in case many

processes are stored within one model.

8 This is a feature from the research project SPEDIT and might be removed in future versions
of PMT.

9 This is a feature that is already implemented in the meta model, but not supported from the
rest of the tool, such that it does not work as described.

User Manual of Process Modeling Tool Page 130
Version 1.2

9.9.2 ToBeImplemented: Preference

The element Preference is an element in the model to store Preferences in

the model. Usually Eclipse preferences are user specific, but some PMT

preferences should be specified in the model to be equal for all users of

the model.

Figure 162: Meta-Model of Preference with all Attributes

Preference contains the following properties (see Figure 162):

 Attributes:

o Name: String: Specifies the name of the preference.

o Value: String: Specifies the value of the preference.

Note: Preferences can be fixed within the project and also stored using the

default Eclipse mechanisms.

9.9.3 History Records

History records can be used to document the history of the model. This is

especially required, since the generated documents have all the same

version 0.8 or 1.0.

History records are contained in the global Process container and have an

association to named, such that it is possible to specify the changes by

assigning the changed elements to the history record.

In the generated document all history records are listed that are

 Linked to elements contained in the selected process module

 Linked to process modules containing the selected modules

 Global (unlinked) records

This allows to have several models in one file and do not list all (unrelated

changes) to a process module.

History records are displayed as shown in Figure 163.

User Manual of Process Modeling Tool Page 131
Version 1.2

Figure 163: History Record Basic Properties

History Records implements Named and in addition it contains the

following properties (see Figure 164):

 Superclass: “Named”, see Section 9.3.1.

 Attributes:

o changedDate: EDate: The date of the change (If the time is

00:00 it will not be added to the generated history)

o changedAuthor: String: The name of the author that did the

changes

o modelStatus: ModelStatus: The status of the model after the

change. It can have the following values:

 INITIAL (default)

 DRAFT

 IN_PROGRESS

 GENERATED

 REVIEWED

 FINAL

 VALIDATED

 MODELED

 VERIFIED

 RELEASED

 PRESENTED

o modelVersion: String: The version of the model

 Associations:

o Changes: Named: [0..*]: The changed / affected model
elements

Note that the order of the records is determined by the dates, if present,

otherwise alphabetical order of the model version strings. If this is not

User Manual of Process Modeling Tool Page 132
Version 1.2

desired the IDs can be used to determine the order instead of the version

strings.

Figure 164: History Records

In the generated reports the history records are displayed in a table (see

Figure 165).

User Manual of Process Modeling Tool Page 133
Version 1.2

Figure 165: Generated History Record (Report)

A smart way to create history records and assign them to the changed

elements is the “Add History Record” Action that works on every Named
element. This is done in the following steps:

1) Select the changed elements (or their containers) in the tree
browser

2) Start the “Add History Record” Action as shown in Figure 166
3) Confirm the creation as shown in Figure 166

4) Update the created element by specific comments

Figure 166: Starting “Add History Record Action”

User Manual of Process Modeling Tool Page 134
Version 1.2

Figure 167: Confirm “New History Record”

The generated history record has the following properties (see Figure

168):
 The new model version: This is computed by incrementing the last digit

from the most recent model version by one (starting with 0.1 if there is
no previous version found)

 The date of performing the action
 The status: same as previous one (or initial if none was found)

 The author: the name of the current user

 Description: “Changed with PMT”. This should be changed
 Changes: The list of performed changes / selected elements.

Figure 168: Properties of generated History Record

9.10 Process Models

The core of PMT are process models. Figure 169 gives an overview on the

main process elements that are all contained in the Process container or in

ProcessModules:

User Manual of Process Modeling Tool Page 135
Version 1.2

 ProcessModule: main structuring element for processes, represents

activities in the processes.

 Artifacts: main data in processes.

 StakeHolder: the acting roles in processes.

 VerificationModule: special verification module to perform verification

activities.

 Criterion: Question that has to be answered during verification.

Figure 169: Main Process Elements

9.10.1 Process Module -> Variantable

The element ProcessModule is the main element for modeling processes.

It describes activities within the process that are performed by stake

holders and produce output artifact by processing input artifacts. They can

also be performed before / after other process module.

Process modules can have sub-modules and references to other processes

(see Section 8.2.5 for description of reference concept). Since process

modules correspond to tasks they can also be used for process

management and planning efforts.

ProcessModules can claim to satisfy requirements and they can be used to

implement process requirements. Verification Modules are a special form

(“subclass”) of ProcessModules.

Figure 170 shows the definition of ProcessModule with all references and

compositions (modeled as attributes in the diagram).

User Manual of Process Modeling Tool Page 136
Version 1.2

Figure 170: Meta-Model of ProcessModule with all Attributes and References

Therefore the element ProcessModule contains the following properties

that can be edited:

 Superclass: Variantable, see Section 9.3.2.

 Subclass: VerificationModule, see Section 9.10.4.

 Container: The following elements can contain ProcessModules:

o Process

o ProcessModule (and VerificationModule)

 Attributes:

o URI: String: an Unique Resource Identifier, pointing to a more

detailed process description, e.g. a Wiki-page

o NumberOfInstance: int: The number of planned instances of

the process. This is only optional.

User Manual of Process Modeling Tool Page 137
Version 1.2

o Effort: float: The estimated effort for performing this task, that

can be used to plan projects and to estimate project status.

o Progress: float: can be used to manually trace the progress to

determine the project status.

 Associations:

o Requirements: Requirement [0..*]: the (usually atomic)

requirements that this process module implements. Note this is

not the claimed requirements, they usually do contain/require

many other requirements.

o ClaimedComplianceRequirements: Requirement [0..*]: the

main requirements that this process module claims to be

compliant.

o InputArtifacts: Artifact [0..*]: the input artifacts that are

processed by this module.

o OutputArtifacts: Artifact [0..*]: the output artifacts that are

created by this process module.

o Tools: Tool [0..*]: The tools that are used within this process

module.

o RefinedProcessModule: ProcessModule [0..1]: The process

module that is refined by this process module, see Section 8.3

o RefiningProcessModules: ProcessModule [0..*]: The

refining process modules that specialize this process module, see

Section 8.3.

o beforeProcessModules: ProcessModule [0..*]: the process

modules that this module is before, so the related process

modules come after this process.

o afterProcessModules: ProcessModule [0..*]: the process

modules that this module is after, so the related process modules

come before this process.

o StakeHolder: Stakeholder [0..1]: The responsible stake

holder for this process.

o InvolvedStakeHolders: Stakeholder [0..*]: Other involved

stakeholders (not the responsible one).

o Depreciated: preMMCondition: MMConditon [0..1]: meta

model condition that has to be satisfied before the process can

be executed (only meaningful within model-based processes).

o Depreciated: postMMCondition: MMConditon [0..1]: meta

model condition that has to be satisfied after the process can be

executed (only meaningful within model-based processes).

o SubProcessModuleReferences: ProcessModule [0..*]: the

process modules that are included via references here, see

Section 8.2.5.

User Manual of Process Modeling Tool Page 138
Version 1.2

o InstanceOfProcessModule: ProcessModule [0..1]: The

generic, parameterized process module that this process is an

instance of. See Section 8.2.7 for instantiations.

o InstantiatedInProcessModules: ProcessModule[0..*]: The

processes that are instances of this generic process modules. See

Section 8.2.7 for instantiations.

o Compliances: Compliance[0..*]: The compliances that this

process is contributing.

o ParameterReferences: Parameter[0..*]: The referred

parameters from other modules that also apply to this module.

See Section 8.2.5 about parameterization.

o DeterminedVariables: ProcessVariable[0..*]: The process

variables that values are determined from this process module,

see Section 8.2.8 for using process variables.

 Containments:

o Tools: Tool [0..*]: The tools used globally within this process.

o Requirements: Requirement[0..*]: The available

requirements within this process.

o Artifacts: Artifact [0..*]: The (global) artifacts available in the

process.

o Methods: Method [0..*]: the available methods in the process.

o ProcessModules: ProcessModule [0.*]: The available

processModules in the process.

o StakeHolders: StakeHolder [0..*]: The available stake

holders / roles in the process.

o Depreciated10: ProcessConditions: ProcessCondition

[0..*]: The available conditions in the process.

o Bindings: Binding [0..*]: The bindings of variables and

parameters in the process.

o Parameters: Parameter [0..*]: The (global) parameters in the

process.

o Types: Type [0..*]: The (global) type definitions in the process.

o ToBeImplemented11: Preferences: Preference [0..*]:

Preferences would allow to store the model relevant preferences,

e.g. validation rule settings in the mode, such that models would

validate identical in all environments, independent from the local

10 This is a feature from the research project SPEDIT and might be removed in future
versions of PMT.

11 This is a feature that is already implemented in the meta model, but not supported from the
rest of the tool, such that it does not work as described.

User Manual of Process Modeling Tool Page 139
Version 1.2

PMT preferences. Also the filter-scopes could be stored as

preferences.

9.10.2 Artifact -> Variantable

Artifacts represent the data in the process, e.g. a specification, model or

code. Artifacts can be contained in Process (global artifacts) and they can

be contained in process modules (local artifacts). They can be modeled as

depicted in Figure 171.

Figure 171: Meta-Model of Artifacts with all Properties

Artifact has the following properties:

 Superclass:

o Variantable, see Section 9.3.2.

o IVerified, see Section 9.3.3.

 SubClasses:

o Model

User Manual of Process Modeling Tool Page 140
Version 1.2

 Container: The following elements can contain Artifacts:

o Process

o ProcessModule (and VerificationModule)

 Attributes:

o PartOfProduct: Boolean: This indicates that the document is

part of the product. PMT checks that every document in the

process is created and used. For artifacts that are part of product

it suffices that they are created.

o ProjectInput: Boolean: This indicates that the document is

input to the process. PMT checks that every document in the

process is created and used. For artifacts that are project input it

suffices that they are used.

o Path: String: Required to denote the path (absolute or relative)

of the document, e.g. “QKit/TestSuite” or

“C:\Qualification\Target\”. The path is exported into VVT tool. It

is used to group the checks and to determine if an element has

changed and required re-verification/validation.

o Status: ProcessStatus: Describes the status of the artifact.

This can be used for project management, see Section 8.2.11.

o DocumentStatus: String: Can be used to describe the status of

the document, e.g. “Draft” or “Final”. Currently this is not used in

PMT.

o Format: String: The format of the artifact, e.g. pdf.

o Version: String: Can be used to describe the version of the

document, e.g. “0.8” or “1.0”. Currently this is not used in PMT.

 Associations:

o readByProcessModules: ProcessModule [0..*]: The process

modules that use the artifact as input.

o createdByProcessModules: ProcessModule [0..*]: The

process modules that create the artifact as output.

o DependsOnArtifacs: Artifact [0..*]: Allows to model

dependencies on the artifact level

o DependingArtifacs: Artifact [0..*]: Allows to model

dependencies on the artifact level

o createdByProcessModules: ProcessModule [0..*]: The

process modules that create the artifact as output.

o

o StakeHolder: Stakeholder [0..1]: The responsible stake

holder for this artifact.

o InvolvedStakeHolders: Stakeholder [0..*]: Other involved

stakeholders (not the responsible one).

User Manual of Process Modeling Tool Page 141
Version 1.2

o RefinedArtifact: Artifact [0..1]: The artifact that is refined by

this artifact, see Section 8.3

o RefiningArtifacts: Artifact [0..*]: The refining artifacts that

specialize this artifact, see Section 8.3.

o SubArtifactReferences: Artifact [0..*]: the artifacts that are

included via references here, see Section 8.2.5.

o ReferencedByArtifacts: Artifact [0..*]: The artifacts that

include this artifact via reference, see Section 8.2.5.

o Compliances:Compliance [0..*]: the compliances that this

artifacts contributes.

o Depreciated: ProcessConditions: ProzessCondition [0..*]: a

condition where this artifact is involved.

 Compositions:

o SubArtifacts: Artifact [0..*]: The artifacts that are contained

in this artifact, e.g. the Test in the TestSuite or the chapters in

the document.

9.10.3 StakeHolder -> Variantable

Stakeholders are the responsible (and contributing) roles / persons in

processes. They “own” processes and artifacts. They can be modeled as

depicted in Figure 172.

Figure 172: Meta-Model of StakeHolder with all Properties

StakeHolder has the following properties:

 Superclass:

o Variantable, see Section 9.3.2.

 SubClasses: -

 Container: The following elements can contain StakeHolders:

o Process

o ProcessModule (and VerificationModule)

 Attributes:

User Manual of Process Modeling Tool Page 142
Version 1.2

o AssignedPerson: String: one person can be assigned to this.

In case several persons shall be used, e.g. Testers, they can be

listed in this field.

 Associations:

o ownedModules: ProcessModule [0..*]: The process modules

that the stakeholder is responsible for.

o InvolvedModules: ProcessModule [0..*]: the process

modules that this stakeholder is involved, but not responsible for.

o OwnedArtifacts: Artifact [0..*]: the artifacts the stakeholder

is responsible for.

o InvolvedArtifacts: Artifact [0..*]: the artifacts that this

stakeholder is involved, but not responsible for.

o Compliances: Compliance [0..*]: the compliances that this

stakeholder contributes.

o OwnedTools: Tool [0..*]: the tools that this stakeholder is

responsible for.

 Compositions: -

9.10.4 VerificationModule -> ProcessModule

Verification Modules are a special case of ProcessModules. They have been

introduced since we decided that every requirement has to be verified and

there needs to be a formal difference between a generic process and a

verification module. A verification module has Criteria (checks/questions)

that have to be verified within the project. The verification modules are

the elements that are the inputs for the verification and validation tool

(VVT). VerificationModules verify always something, usually an artifact.

User Manual of Process Modeling Tool Page 143
Version 1.2

Figure 173: Meta-Model of VerificationModule with all Properties

In addition to ProcessModule the VerificationModule has the following

properties:

 Superclass:

o ProcessModule, see Section 9.10.1.

 SubClasses: -

 Container: The following elements can contain VerificationModules:

o Process

o ProcessModule (and VerificationModule)

 Attributes:

o Implicit: Boolean: indicates that the verification is done

implicitly, i.e. without further action required. In this case this

verification module should not have criteria, but Sub-Modules

(modeled as Sub-Processes).

 Associations:

o VerifiedCompliances: Compliance [0..*]: the compliances

that this verification module explicitly verifies. Note that this is

the “Mandatory” relation to Compliance, because every

Compliance element has to have ProcessModules that implement

them (usually not verification modules) and VerificationModule

(or Criteria) to verify them.

 Compositions:

o Criteria: Criterion [0..*]: The criteria to be checked when

performing this verification and validation.

User Manual of Process Modeling Tool Page 144
Version 1.2

9.10.5 Criterion -> Variantable

A Criterion is a single question that has to be answered as part of a

verification, for example: “Is the specification clear?” or “Has the test

been executed successfully?”

Criterion has the following properties:

 Superclass:

o Variantable, see Section 9.3.2.

 SubClasses: -

 Container: The following elements can contain VerificationModules:

o VerificationModule

 Attributes: -

 Associations:

o VerifiedCompliances: Compliance [0..*]: the compliances

that this criterion explicitly verifies. Note that this is the

“Mandatory” relation to Compliance, because every Compliance

element has to have ProcessModules that implement them

(usually not verification modules) and VerificationModule or

Criteria to verify them.

 Compositions: -

Note: that the “question” of the criterion has to be modeled within its

description. So a good example of a Criterion is:

 Name: “Clearness”

 ID: “C1”

 Description: ”Is the specification clear?”

9.11 Requirements & Compliance

Requirements and compliance are core functionalities of PMT. Their

handling is described in Section 8.2.3 and 8.2.4. The meta model for
Requirements & Compliances is depicted in Figure 174.

User Manual of Process Modeling Tool Page 145
Version 1.2

Figure 174: Metamodel for Requirements & Compliances

9.11.1 Requirement -> Variantable

The requirement describes requirements for the processes, usually derived

/ copied from safety standards. Important is to keep the traceability back

to the standards. This is typically done by using the IDs from the

standards as IDs.

Requirement has the following properties:

 Superclass:

o Variantable, see Section 9.3.2.

 SubClasses: -

 Container: The following elements can contain Requirements:

o Process: Top level requirements like “ISO 26262” are usually

contained in the process element

o Requirement: Sub-Requirements, like “8-11” are usually

contained in other requirements.

 Attributes:

o RecommendedFrom: SafetyLevel: the lower level where this

requirement is mandatory from. This corresponds to “highly

recommended” in most standards.

o RecommendedFrom: SafetyLevel: the upper level where this

requirement is mandatory.

 Associations:

o RequiredRequirements: Requirement [0..*]: The required

requirements. Usually all contained requirements are by default

User Manual of Process Modeling Tool Page 146
Version 1.2

also “required”. This association can be sued to implement

references to other chapters

o RequiredByRequirements: Requirement [0..*]: the inverse

relation of required requirements (see above).

o ClaimingProcessModules: ProcessModule [0..*]: the

process modules that claim to satisfy this requirement.

o ProcessModuleCompliances: Compliance [0..*]: the

compliance argumentations for this requirements that are

contained in ProcessModules.

 Compositions:

o SubRequirements: Requirement [0..*]: The contained

requirements usually the sub-sections of a section or the

requirements in a section.

o Complainces: Complaince [0..*]: The compliance

argumentation explaining how this requirements is satisfied and

verified.

9.11.2 Complaince -> Variantable

The compliance element is used to express the compliance with a

requirement (either the containing or a linked requirement). Compliance

consists of a reasonable argumentation (in the description) and three

related things:

 Requirement: the requirement that is satisfied

 ProcessModules: the ProcessModules that implement the requirement

(also Stakeholders or Artifacts can be used to implement the

requirement).

 VerificationModule: the verification module that checks (using criteria)

if the requirement is satisfied.

Compliance has the following properties:

 Superclass:

o Variantable, see Section 9.3.2.

 SubClasses: -

 Container: The following elements can contain Requirements:

o ProcessModule: ProcessModule can contain compliance

argumentations in a modular/reusable way.

o Requirement: Each requirements can contain it’s compliance

argumentation.

 Attributes:

User Manual of Process Modeling Tool Page 147
Version 1.2

o Applicable: Boolean (default=true): indicates if the Requirement

is applicable12.

 Associations:

o ProcessModules: ProcessModule [0..*]: the process modules

that implement this requirement.

o StakeHolders: StakeHolder [0..*]: the stake holders that

implement this requirement.

o Artifacts: Artifact [0..*]: the artifacts that implement this

requirement.

o RequiredRequirements: Requirement [0..*]: The required

requirements. Usually all contained requirements are by default

also “required”. This association can be sued to implement

references to other chapters

o Requirement: Requirement [0..1]: the requirement that this

compliance is arguing (Note this is only one, since every

requirements should have it’s own argumentation). In case the

compliance is contained in a Requirement, this association is not

needed.

o SubCompliances: Compliance [0..*]: the compliance that are

logically required to argue the compliance of the requirements.

o VerificationModules: VerificationModule [0..*]: the

verification modules that verify that this Compliance

argumentation is true.

o Criteria: Criterion [0..*]: the Criteria that verify that this

Compliance argumentation is true.

Note every Compliance Argumentation has to have either Sub-

Compliances or VerificationModules or Criteria.

 Compositions:

o ContainedCompliances: Compliance [0..*]: the compliance

that are contained in this compliance, per default contributing to

the compliance.

12 Usually we try to avoid non-applicable requirements, e.g. by tailoring using variants,
however sometimes it is easier to mark a requirement as no applicable using this attribute.

User Manual of Process Modeling Tool Page 148
Version 1.2

9.12 Model-Based Processes

Model-Based processes usually come with a modeling tool. This modeling

tool has a meta model that formalizes the models that can be built

syntactically.

The elements to describe model-based processes are (see Figure 175):

 Model: Specialization of Artifact containing the modeling elements

 MetaModel: Container for the meta-model (in order to make it re-

usable in different models)

 MetaModelElement: the modeling elements that can be used to create

the model

 MetaModelAttribute: the attributes of the elements that can be used to

describe the elements

 MetaModelAssociation: the associations of the elements that can be

used to describe the relations between elements

Figure 175: Meta-Model for Model-Based Processes

In contrast to other UML models & modeling tools, e.g. EMF, the goal of

this model is not to generate code from the meta model, but just to

describe the model. Therefore some aspects do not need to be modeled,

e.g. the inverse relations or the cardinalities13 of the associations. Those

things are part of the modeling tools that are described.

9.12.1 Model -> Artifact

The model element is a description of the models that are created within a

model-based process. In contrast to an Artifact it allows to provide a

detailed specification of a model element including a specification of

mandatory and optional elements.

Model has the following properties:

 Superclass:

13 Cardinalities have been added to the model for description purpose only.

User Manual of Process Modeling Tool Page 149
Version 1.2

o Artifact, see Section 9.3.2.

 SubClasses: -

 Container: The following elements can contain Models:

o Process

o ProcessModule (and VerificationModule)

 Attributes: -

 Associations:

o MandatoryElements: MetaModelElement [0..*]: The

mandatory elements that have to be used when creating the

model

o OptionalElements: MetaModelElement [0..*]: The optional

elements that can be used when creating the model.

o MandatoryAttributes: MetaModelAttribute [0..*]: The

mandatory attributes that have to be used when creating the

model.

o OptionalAttributes: MetaModelAttribute [0..*]: The optional

attributes that can be used when creating the model.

o MandatoryAssociations: MetaModelAssociation [0..*]: The

mandatory associations that have to be used when creating the

model.

o OptionalAssociations: MetaModelAssociation [0..*]: The

optional associations that can be used when creating the model.

 Compositions:

o MetaModel: MetaModel [0..1]: the container for the meta

model

Note: Models have to be created manually within PMT, however the meta

model can be imported automatically for modeling tools built with Eclipse,

since it is possible to import .ecore files and to create the corresponding

models, see (“Ecore Import”) in Section 7.2.4.

9.12.2 MetaModel

The meta model is the meta model of a used modeling tool. It can be used

to build different kinds of models, for example an UML Tool can have state

charts and class diagrams that both use packages. Therefore the meta

model is a separate entity that can be reused within all models of that

tool.

MetaModel has the following properties:

 Superclass:

 SubClasses: -

 Container: The following elements can contain MetaModel elements:

o Model

User Manual of Process Modeling Tool Page 150
Version 1.2

 Attributes: -

 Associations: -

o Tool: Tool [0..1]: The modeling tool that is based on this meta

model.

 Compositions:

o MetaModelElements: MetaModelElement [0..*]: The

elements in the meta model.

9.12.3 MetaModelElement -> Named

The meta model element corresponds to a single element in the modeling

tool, e.g. a class or a state.

MetaModelElement has the following properties:

 Superclass:

o Named, see Section 9.3.1.

 SubClasses: -

 Container: The following elements can contain MetaModelElements:

o MetaModel

 Attributes: -

o IsRoot: Boolean: Characterizes the root element in the model

that is the root of the model tree. In PMT “Process” is the root

element for all models.

o IsAbstract: Boolean: Is true for interfaces or abstract classes.

 Associations:

o MandatoryInModels: Model [0.*]: The models in which this

element is mandatory.

o OptionalInModels: Model [0.*]: The models in which this

element is optional.

o Parents: MetaModelElements [0.*]: The parent/superclass

elements/interfaces of this model element. For Example

“MetaModelElement” has the parent “Named”.

 Compositions:

o MetaModelAttributes: MetaModelAttribute [0..*]: The

attributes of the model element.

o MetaModelassociations: MetaModelAssociation [0..*]: The

associations/relations of the model element.

9.12.4 MetaModelAttribute -> Named

Attributes are used to specify properties of elements. Using the element

MetaModelAttribute this can be specified. MetaModelAttribute has the

following properties:

 Superclass:

o Named, see Section 9.3.1.

User Manual of Process Modeling Tool Page 151
Version 1.2

 SubClasses: -

 Container: The following elements can contain MetaModelAttributes:

o MetaModelElement

 Attributes: -

o Type: String: Describes the type of the attribute, e.g. String or

Boolean.

 Associations:

o MandatoryInModels: Model [0.*]: The models in which this

attribute is mandatory.

o OptionalInModels: Model [0.*]: The models in which this

attribute is optional.

 Compositions: -

9.12.5 MetaModelAssociation -> Named

Associations are used to describe the relations between elements. They

can be compositions and non-containing associations. Sometimes

associations denote only non-compositional relations.

MetaModelAssociation has the following properties:

 Superclass:

o Named, see Section 9.3.1.

 SubClasses: -

 Container: The following elements can contain MetaModelAssociations:

o MetaModelElement

 Attributes:

o Containment: Boolean: Is true for associations that describe

compositions, i.e. contain other elements in the modeling tree.

o Cardinality: Cardinality: Specifies the cardinality of the

associations (currently this is only used for description purpose).

 Associations: -

o MandatoryInModels: Model [0.*]: The models in which this

association is mandatory.

o OptionalInModels: Model [0.*]: The models in which this

association is optional.

 Compositions: -

9.13 Tools

Tools play an important role in processes and support methods14. They

can be modeled as depicted in Figure 176.

14 Note that the use of some methods is required from safety standards, however for
simplicity we decided not to make a so formal model of the standards that would include
methods and their safety requirements. This can be done in the TCA tool when refining the
model. In PMT Methods have currently no special semantics and can be modeled only for

User Manual of Process Modeling Tool Page 152
Version 1.2

Figure 176: Meta-Model of Tools

9.13.1 Tool -> Variantable

Tools can be used to support the application of methods in processes. In

safety relevant processes it is important to use the tools safely. Therefore

they have to be classified and eventually qualified. Tool has the following

properties:

 Superclass:

o Named, see Section 9.3.2.

 SubClasses: -

 Containers:

o Process: Tools can only be contained in the global container.

 Attributes:

o Preliminary Classification: String: a preliminary classification

of the tool, for example “TCL1”, “uncritical” or “To be qualified”.

o Classification Explanation: String: Should explain the

preliminary15 classification.

 Associations: -

o ProcessModules: ProcessModule [0.*]: The process modules

(“use cases”) where the tool is used.

o Methods: Method [0.*]: the supported methods from the tool.

documentation purpose.

15 Note this is not a standard compliant way to classify tools, but might serve as a first
orientation. Use the TCA tool from http://www.validas.de/en/services/tca/ for standard
compliant classification and qualification. Future versions of TCA might be able to import
PMT models for refinement.

http://www.validas.de/en/services/tca/

User Manual of Process Modeling Tool Page 153
Version 1.2

o ToolOwner: StakeHolder [0..1]: The owner responsible for the

tool (and its qualification).

 Compositions: -

9.13.2 Method -> Named

Methods can be required from safety standards and applied within

processes. Method has the following properties:

 Superclass:

o Named, see Section 9.3.1.

 SubClasses: -

 Containers:

o Process: Methods can only be contained in the global container

 Attributes: -

 Associations: -

o Tools: Tool [0.*]: The tools that support this method.

 Compositions: -

10 Known Issues

The known issues can be accessed at the bug tracing system of the

https://validas.atlassian.net/projects/PMT/issues/ (internally). Issues can

be submitted by sending mailto:info@validas.de

The errors are classified with a priority (blocker=highest, critical=high,

major=medium, minor=log, and trivial=lowest).

For the version 1.0 the following known bugs with priority major or higher

are known (at April 17th, 2019). The corresponding work arounds are

described if applicable.

 PMT-16: Preferences

 PMT-39: EMF Form of Process does not collapse

 PMT-38: Cannot Delete Types and Parameters

 PMT-20 Scroll-Bars in Forms not OK

 PMT-9 StackOverflow when opening inconsistent Model

None of the currently there are no blockers available, therefore this

version of PMT was released.

Please report issues found during the work with the PMT to

info@validas.de.

mailto:info@validas.de
https://validas.atlassian.net/browse/PMT-38

User Manual of Process Modeling Tool Page 154
Version 1.2

11 Licenses & Liability

The PMT/VVT are products of Validas AG and must not be distributed

without permission of Validas AG.

It has been developed using Eclipse and POI and docx4j. The licenses of

these components are:

 Eclipse: EPL: http://www.eclipse.org/legal/epl-v10.html

 POI: Apache License Version 2.0: http://www.apache.org/licenses/

16
 docx4j: Apache License Version 2.0

Validas AG does not take any guarantee for the functionality of the PMT /

VVT tool. As stated in the previous section, PMT has a TCL 1 and might

have critical errors that the user has to detect during the review of the

results.

VALIDAS AG AND ITS AFFILIATES MAKE NO WARRANTY OF ANY KIND

WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. VALIDAS AG AND ITS AFFILIATES SHALL NOT BE

LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL

DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE

INFORMATION CONTAINED IN IT, EVEN IF VALIDAS AG AND ITS

AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

16 Note the Apache Licence 2.0 is distributed with this product in the jar file of the plugin
de.validas.excelinterface, which is found in the plugins directory of the PMT.

http://www.eclipse.org/legal/epl-v10.html
http://www.apache.org/licenses/

User Manual of Process Modeling Tool Page 155
Version 1.2

12 Examples & Further Documentation

In the distribution of the tool chain analyzer is an examples directory.

It can be found at <PMT>/plugins/

de.validas.spm.pmt.examples_1.0.0<date>/.

It contains the following Models:

 ModuleTest: Model and artifacts for a module test process and it’s

compliance to ISO 26262

 MetaProcess: Process Model for the creation of the process

 Documentation/*: models for images and examples used within the

user manual

In addition to this user manual, there is a First Step presentation available

“PMTExample.ppt” in the example plugin. It is located in

 ModuleTest/PMTExample.ppt

Furthermore there are (currently German only) video tutorials available

for download explaining the method. They can be found in the PMT section

of http://www.validas.de/en/services/qualification/.

http://www.validas.de/en/services/qualification/

